

PCC, Amerinsa, Asinsa, SCAN – 1st Year

CHEMISTRY 1 - Test nº1 - Duration : 1 hour

No document allowed. Only « College » type calculators are authorized. Answers must be justified. Results must be given with the appropriate number of significant digits.

The 3 exercises are independent.

Data : Rydberg's constant for Hydrogen: $R_H = 109677 \text{ cm}^{-1}$ Planck's constant: $h = 6.626 \times 10^{-34} \text{ J.s}$ Light celerity: $c = 2.998 \times 10^8 \text{ m.s}^{-1}$ Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Elementary charge: $e = 1.602 \times 10^{-19} \text{ C}$ Mass for electron: $m = 9.10939 \times 10^{-31} \text{ kg}$	Element M (g.mol ⁻¹) Density of water: Density of octane	1H 1.01 1.00 g.c : 0.70 g	6C 12.0 cm ⁻³ .cm ⁻³	7N 14.0	₈ O 16.0	
Kinetic Energy: $E_k = 1/2 \text{ mv}^2$	Molar volume of ideal gas in standard conditions = 22.4 L.mol^{-1}					

Exercise 1: Combustion of gasoline (approximate scale of mark 5 pts)

Liquid octane (C_8H_{18}) can undergo a total combustion to give liquid water and gaseous carbon dioxide. All gases will be considered as perfect gases.

- a) Write down the equation of octane (C_8H_{18}) combustion.
- b) Starting with one mole of octane and a large excess of dioxygen:
 - i) Compute in g the mass of CO_2 produced.
 - ii) Compute in mL the maximum volume of liquid water that will be produced.
- c) Compute in L the volume of CO_2 produced when starting with 100 mL of octane and $1m^3$ of dioxygen.
- d) Let's consider a liquid mixture (of density 0.75 g.cm⁻³) made of non-flammable compound (5 weight

%) and octane (95 weight %). The combustion of one liter of such mixture produces $1m^3$ of CO₂: compute the yield of the reaction.

Exercise 2: Hydrogen spectroscopy (approximate scale of mark 7 pts)

a) Give the definition of the ionization energy of hydrogen. Which data from the absorption spectrum allow the determination of its value?

- b) Which phenomenon is observed during the transition of the electron from the excited state to the ground state?
- c) From Balmer's formula, in the case of hydrogen
 - i) Establish the expression of the energy E_n for a level n, as a function of E_1 and n (justify).
 - ii) Compute E₁, first in J and then in eV to within 0.01 eV.
 - iii) Give the energy values E_2 , E_3 , E_4 , E_5 and E_6 to within 0.01 eV.
- d) Represent the corresponding complete Grotrian's diagram.
- e) Give the electromagnetic radiation frequency (in Hz) required for obtaining an excitation of the electron up to level n=6.
- f) How many rays will then be observed on its corresponding emission spectrum? Indicate them on the diagram (question d).

Exercise 3: Study of a hydrogen like ion (approximate scale of mark 7.5 pts)

When irradiation is performed with photons, the energy of which exceeds the ionization energy of a hydrogen-like system, it is experimentally observed that the excess of energy is transferred to the electron and converted into kinetic energy.

Irradiation by photons of wavelength $\lambda_0=1.420$ nm of a hydrogen like ion X extract an electron with a 1.78×10^6 m.s⁻¹ speed. We will consider R_x = R_H.

- a) Give first the literal expression **and then** compute the ionization energy of the hydrogen like ion X in Joules **and** in eV.
- b) Show that this hydrogen like ion is obtained from oxygen. Give its formula.
- We will consider the emission spectrum obtained after an irradiation with an electromagnetic radiation of energy comprised between 864 and 866 eV.
- c) Which maximum level can be reached after this excitation?
- d) On the emission spectrum, a ray of wavelength λ_1 comprised between 400 and 450 nm is observed.
 - i) To which electromagnetic domain does it correspond to?
 - ii) Determine the transition corresponding to this ray.
 - iii) Compute in eV the energy of the emitted photon.