

Correction for Test I – Duration : 1h

I. Atomic model (6 points)

1)	<i>n</i> : main quantum number, charcaterizes the size of the orbital or numbers yhe electronic shell; n being a positive integer (> 0)
	ℓ : secondary quantum number, charcaterizes the shape of the orbital or numbers the sub-shell;
	$0 \le \ell \le n-1$
	m_{ℓ} : magnetic quantum number or orbital, characterizes the orientatipon of the orbitals in space, or the quantum boxes, $-\ell \le m_{\ell} \le +\ell$
	m_s : spin quantum number, characterizes the spin and the quantification of the kinetic moment of the
	electron, $m_s = \pm 1/2$
2)	a) FALSE : if $\ell = 1$, the lectron is in a p sub-shell (not d)
	b) FALSE : if $n = 4$, the electron is in the N shell (not O, which $n = 5$)
	c) FALSE : for a d electron, as $\ell = 2$, \mathbf{m}_{ℓ} can be equal to -2 , -1 , 0 , 1 , 2 (but not 3)
	d) FALSE, for a (3)d subshell : $\ell = 2$; $m_{\ell} = -2, -1, 0, 1, 2$; 5 quantum boxes, each occupied at best by 2
	electrons : can be occupied by maximum 10 electrons (and not 6)
	e) FALSE : $n = 3$, $\ell = 0, 1, 2$ that correspond respectively to the s, p and d orbitals : no f exists. For an
	electron to be in a f-subshell ($\ell = 3$), n has to be at least equal to 4.
	f) TRUE

g) **TRUE**

II. Spectroscopy of an hydrogen-like system (14 points)

In an **absorption spectrum**, the rays that are observed correspond to transitions from n = 1 to **upper levels**. 1) As wavelength and energy varies in an opposite way: $\lambda_{\rm I}$ owns the highest wavelength, thus corresponds to the transition with the smallest energy, thus involving levels that are the closest to each other : starting from n = 1, it corresponds to the transition from n = 1 to n = 2 λ_{II} owns the 2nd highest wavelength, thus corresponds to the transition with the 2nd smallest energy, thus involving the second closest level to n = 1: it corresponds then to the transition from n = 1 to n = 3 λ_{im} , owns the smallest wavelength, thus corresponds to the transition with the highest energy, involving the furthest level to level n = 1: it corresponds then to the transition from n = 1 to $n = \alpha$ $\lambda_{I:} \text{ transition } n = 1 \text{ to } n = 2, E_2 - E_1 = \frac{h \times c}{e \times \lambda_I} = 367.19 \text{ eV}; \\ \lambda_{II:} \text{ transition } n = 1 \text{ to } n = 3, E_3 - E_1 = \frac{h \times c}{e \times \lambda_{II}} = 435.24 \text{ eV} \\ \lambda_{III:} \text{ transition } n = 1 \text{ to } n = 4, E_4 - E_1 = \frac{h \times c}{e \times \lambda_{III}} = 458.92 \text{ eV}; \\ \lambda_{IV:} \text{ transition } n = 1 \text{ to } n = 5, E_5 - E_1 = \frac{h \times c}{e \times \lambda_{IV}} = 470.05 \text{ eV} \\ \lambda_{V:} \text{ transition } n = 1 \text{ to } n = 6, E_6 - E_1 = \frac{h \times c}{e \times \lambda_V} = 476.01 \text{ eV}; \\ \lambda_{VI:} \text{ transition } n = 1 \text{ to } n = 7, E_7 - E_1 = \frac{h \times c}{e \times \lambda_{VI}} = 479.69 \text{ eV} \\ \lambda_{tim:} \text{ transition } n = 1 \text{ to } n = \infty, E_{\infty} - E_1 = \frac{h \times c}{e \times \lambda_{IIm}} = 489.73 \text{ eV} \\ Careful \text{ with the precision theterms of the terms of terms of the terms of the terms of terms of$ Careful with the precision that was required !!!! From $E_{\infty} - E_1 = \frac{h \times c}{e \times \lambda_{\lim}} = 489.73 \text{ eV}$, and as $E_{\infty} = 0$ and values are set as negative: $E_1 = -489.73 \text{ eV}$ 2) From question 1, we computed $E_n - E_1$. From question 2, we have E_1 3) Thus $E_2 = (E_2 - E_1) + E_1 = \frac{h \times c}{e \times \lambda_I} + E_1$

	Resulting Grotrian's diagram with the energy levels and the absorption rays (each being identified!!!)
	$E (eV)_{\uparrow}$
	0 $n = \infty$
	-10,04 $=$ $n = 7$
	$-19,68$ λ_5 $n=5$
	$-30,81$ λ_4 $n=4$
	$-54,49$ λ_3 $n = 3$
	λ_2
	$-122,54$ \star $n = 2$
	$ \lambda_1 $
	$-489,73 \qquad \qquad n=1$
4)	Using Ritz-Balmer equation and the ionization energy that corresponds to the transition from $n = 1 \rightarrow \infty$
• • •	
	$n \propto : Z = \sqrt{\frac{E_i}{h \times c \times R_X}} = 6$: thus the hydrogen-like ion is ${}_{6}X^{5+}$
5)	$E_i = -E_1 \times N_A = 4.724.10^4 \text{ kJ.mol}^{-1}$ (careful with the number of significant digits!!!)
6)	a) Ray $\lambda_V = 26.05$ Å corresponds to the transition from $n = 1$ to $n = 6$.
	As we want to observe this transition, we need to provide at least the energy that corresponds to this
	transition: this defines the minimum energy (if you provide less than $E_{1\rightarrow 6}$, absorption will not
	occur !!!).
	Because we only want the given transition, we need to provide strictly less energy than the one required
	to promote the electron to $n = 7$: this defines the maximum energy.
	Thus : $E_{1\to 6} \le E < E_{1\to 7}$
	As energy and frequencies are proportional to each other, we have : $v_{1\rightarrow 6} \leq v < v_{1\rightarrow 7}$
	$v_{1\to 6} = \frac{E_6 - E_1}{h} = 1.151.10^{17} \text{ Hz}$
	11
	$v_{1 \to 7} = \frac{E_7 - E_1}{h} = 1.159.10^{17} \text{ Hz}$
	(careful with the number of significant digits!!!)
	b) After excitation to level $n = 6$, we may observe 15 rays in the corresponding emission spectrum $E (eV)_{A}$
	$0 \qquad n = \infty$
	-10.04 $=$ $n = 7$
	-10,04 - 13,72 = n = 7 = 6
	$-19,68 \downarrow 111 = n = 5$
	$-30,81$ \rightarrow $n = 4$
	$-54,49$ \rightarrow $n=3$
	-122.54 \rightarrow \rightarrow $n=2$
	$-489,73 \underbrace{\qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad }_{n=1} n = 1$
	c) As the ionization energy for hydrogen is 13.60 eV, the two radiations that own a lower energy are:
	c) As the ionization energy for hydrogen is 13.60 eV, the two radiations that own a lower energy are:
	i. Transitions from n = 6 down to n = 5 ($E_{6\rightarrow 5} = 5.96 \text{ eV}$) and from n = 5 down to n = 4 ($E_{5\rightarrow 4} = 11.13 \text{ eV}$)
	11.13 eV
	ii. The corresponding wavelengths are then $\lambda_{6\to 5} = 207$ nm and $\lambda_{6\to 5} = 112$ nm. iii. They belong to the UV domain
7)	
,,	$E_{T} (eV) = E_{i} (eV) + E_{c} (eV) = E_{i} (eV) + \frac{1}{2} \frac{mv^{2}}{e} = 489.73 + 2.84 = 492.57 eV$
	(careful with the precision that was required!!!)