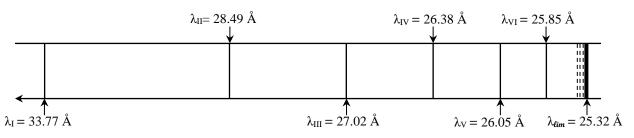
Chemistry 1 - Test n°1 - Duration: 1h


No document allowed. Any unconnected calculators are authorized	
Answers must be justified	
Give your answers with the appropriate number of digits	
Data:	
Rydberg's constant for Hydrogen: $R_H = 109$ 677 cm ⁻¹	
Planck's constant: $h = 6.626 \times 10^{-34}$ J.s	Light celerity: $c = 2.998 \times 10^8 \text{ m.s}^{-1}$
Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	Elementary charge: $e = 1.602 \times 10^{-19} \text{ C}$
Mass for electron: $m = 9.10939 \times 10^{-31} \text{ kg}$	$E_{\text{kinetic}} = \frac{1}{2} \text{ mv}^2$

I. Atomic model (6 pts)

- 1) An electron is described by four quantum numbers n, ℓ, m_ℓ and m_s . Name each quantum number and describe what they characterize and the values they can take (you can give your answers in a table).
- 2) Are the following statements true or false? If false, replace the statement with the correct one.
 - a. If $\ell = 1$, the electron is in a d sub-shell.
 - b. If n = 4, the electron is in the O shell.
 - c. For a *d* electron, m_{ℓ} can be equal to 3.
 - d. The *3d* sub-shell can be occupied by a maximum of 6 electrons.
 - e. The quantum number n of an electron from an f sub-shell can be equal to 3.
 - f. The wavelength associated to an electron is inversely proportional to its mass.
 - g. Heisenberg's indeterminacy principle has no consequence at a macroscopic scale.

II. Spectroscopy of an hydrogen-like system (14 pts)

The following scheme represents the wavelength of the six first rays and the short-wavelength limit (λ_{lim}) of the **absorption spectrum** for a **hydrogen-like element** X^{n+} of atomic number Z. We will consider $R_x = R_H$.

- Identify the levels of the ion involved in the seven absorption rays observed and compute in eV (to within 10⁻² eV) the energy associated to each transition.
- 2) Give the energy of the fundamental level E_1 in eV (to within 10^{-2} eV) of this ion.

- 3) Represent on a Grotrian's diagram the energy levels of the ion and the transitions corresponding to the observed absorptions lines. Determine the Energies in eV (to within $10^{-2} eV$) of the levels involved.
- 4) Identify the hydrogen-like ion. Represent it according to the form $_{z}X^{n+}$.
- 5) Give the ionization Energy in **kJ.mol**⁻¹?
- 6) We want to excite this hydrogen like element in order to observe only the ray $\lambda_V = 26.05$ Å of the **absorption spectrum.** Monochromatic radiation cannot be produced, but only a continuous radiation which we can isolate a frequency range using a filter.
 - a. Determine the frequency range that should be applied to observe only the ray $\lambda v = 26.05$ Å. Express the lower frequency v_{min} and the upper frequency v_{max} in Hz.
 - b. How many lines will then be observed on its corresponding emission spectrum? Indicate them on the diagram (question 3).
 - c. In this emission spectrum, there are only two radiations which energy is lower than the ionization energy of hydrogen (remember that : $E_1^H = -13.60 \text{ eV}$).
 - i. Which transitions do they correspond to?
 - ii. What are their corresponding wavelengths in nm to within 1 nm?
 - iii. To which electromagnetic domain do these radiations correspond to?

When irradiation is performed with photons, the energy of which exceeds the ionization energy of a hydrogen-like system, it is experimentally observed that the excess of energy is transferred to the ejected electron and converted into kinetic energy.

7) Which energy (in eV to within 10^{-2} eV) must be absorbed by the hydrogen-like system so that its electron is ejected with a speed of $v = 10^6$ m.s⁻¹?