2018-2019 CORRECTION of Test 2 (December 14th, 2018)

Part I : Generalities					
1.	Globally, Ionization energy increases from the left to the right along a period (with some exceptions)				
2.	The values provided do not follow this general rule.				
	N : $1s^22s^22p^3$: 2p sublayer half filled, which leads to an overstabilization of the atom $\rightarrow E_i$ higher than				
	excpected				
3.	C : $1s^22s^22p^2 \rightarrow Sn : 5s^2 5p^2$ because same column but fifth line ($n_{max}=5$)				
	Sn : $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^2$				
Part II : Carbonated water and acidifier					
5. and .6		Lewis formula	Geometry		
	(O=C=O)		Linear		
	н ́О́н		Bent		
)	Planar triangular		
		Э	Planar triangular		
	0 H- <u>0</u> −P-0 IO H	-H (1)	Tetrahedral		
7.	CO_2 : The two bonds are polarized, but because of the shape the sum of the two dipolar moments is $C \rightarrow$ non polar molecule.			noments is 0	
	H ₂ O : The two bonds are polarized, because of the shape of the molecule the sum of the two dipolar moments is not 0 \rightarrow polar molecule				
8.	The CO ₃ ²⁻ ion presents the following mesomeric formulas which highlight the partially double character of each CO bond (intermediate between a double and a single bond) :				

	Cl : all the CO bonds present the same bond length (intermediate between a single and a double bond)					
Part III : Vanilla flavour						
9 and 10						
<i>5.</i> and 10.	$H = \begin{bmatrix} 0 & sp^2 & sp^3 \\ H & C & c & c \\ sp^2 & H & H \\ H & C & c & H \\ H & C & sp^2 \\ H & c & $					
11.	For the C atoms hybridized sp2, there is a lateral overlap of the non hybridized 2p AO :					
	The 6 given C are thus in the same plane.					
12.	Free rotation is not possible because the lateral overlap described above (that stabilizes very much the molecule) would not exist anymore. One can also realize that free rotation is excluded with writing a mesomeric form that shows that the given Ca-Cb bond is partially double: : $\int_{H} OH + OH$					
13.	As we can have a partially double bond character for (Ca-Cb) bond, just as for the C-C bonds in the benzene ring: they all have the same bond length					
14.	7 C atoms Cwith 4 valence AO (2s ² 2p ²)					
	6 H atoms with 1 valence AO (1s ¹)					

	1 O atom with 4 valence AO (2s ² 2p ⁴)		
	➔ Total of 38 valence AO interacting to form 38 MO.		
15.	7 C atoms Cwith 4 valence electrons (2s ² 2p ²)		
	6 H atoms with 1 valence electron (1s ¹)		
	1 O atom with 6 valence electrons $(2s^2 2p^2)$		
	Total of 40 valence electrons.		
16.	$\Delta E = \frac{hc}{\lambda} \lambda = 129.6 \text{ nm}$		
17.	Dichloromethane is a polar solvant. Vanilline is a polar molecule $ ightarrow$ Van der Waals interactions (in		
	particular Keesom type involving permanent dipole – permanent dipole)		
	Can't be a Hydrogen bond: the latter involves a small and highly electronegative element as an acceptor (F, O, N): Cl is not electronegative enough, and too big for such purpose		
18.	Max absorption wavelength (346 nm) in the UV domain : colorless molecule.		
19.	$A_{i}(\lambda, T) = \varepsilon_{i}(\lambda, T) \times 1 \times c_{i}$		
	With I, the length of the cuvette that is crossed by the light (in cm),		
	c _i , concentration of the absoprbing species I (in mol/L)		
	ϵ_{i} , molar absorption coefficient of compound i at the given wavelength λ and temperature T (in L.mol ⁻¹ .cm ⁻¹).		
20.	If no dilution : A = 3,9 \rightarrow out of the range which Beer Lambert's law apply.		
21.	$C_{N^{\circ}3} = 3.29 \times 10^{-5} \text{ mol.L}^{-1}$		
22.	Dilution factor = 5 (integer value !!!!)		
23.	For S ₀ , A ₃₄₆ = 0.398 thus $C = 10 \times \frac{0.398}{28173} = 1.43 \ 10^{-4} \text{ mol.L}^{-1}$		
24.	Vtot(S0) = 500 mL		
	Thus $n_{vanilline} = 7.07. \ 10^{-5}$ mol in a can (whatever the capacity of the can is!!!!)		
	And m _{vanilline} = 10.75 mg per can		
	A 70 kg person can thus have at maximum 700mg of vanillin /day $ ightarrow$ have then at maximum 66,5 can.		
Partie IV : C	onsitution of cola cans		
25.	Fcc with one atom at eahc vertex plus one at the very center of each face		
26.	Population = 4 atoms per cell		
27.	From the density, one can write : $a = \left(\frac{4 \times M(Al)}{Na \times a}\right)^{1/3}$		
	a = 4.05 Å		
28.	Tangency condition along the diagonale of a face : $R = \frac{a \times \sqrt{2}}{4}$		
	R = 1.43 Å		

29.	$C = \frac{4 \times (4/3)\pi R^3}{a^3} C = 0.74 \rightarrow \text{compact structure}$		
30.	O holes : very center of the cube + center of each edge : total of (1 + 12/4) = 4		
	T holes : at each corner : total of 8		
31.	$R_0 = \frac{a}{2} - R \rightarrow R_0 = 59.5 \text{ pm}$		
	$R_T = \frac{a\sqrt{3}}{4} - R \rightarrow R_T = 32.4 \text{ pm}$		
32.	Substitution alloy as the radius of copper is bigger than $R_{\rm O}$ and R_{T} (see above), and is comparable to the radius of Al		
	Or : according to the description of the cell : some aluminum are substituted by some copper atoms		
33.	Cu Cu		
	AI 📕 AI		
	Cu 🔷 Cu		
34.	There is per cell : 1 atom of Cu (each vertex : 8 * 1/8) and 3 atoms of Al (center of each face ! 6 * ½)		
	\rightarrow alloy is Al ₃ Cu ₁		