	Problem 1 : Quantum num	bers and electronic configuration	Some comments
a)	n : integer values ≥ 1 l : integers values $0 \le l \le n-1$ m :integer values $-l \le m \le +l$ s : ± 1/2	or 1, 2, 3, 4n or 0, 1, 2, 3, 4(n-1) or -l, -l+1 0, l-1, l	Lack of precision: n, I and m are integers; while s is not. For example, stating that 0 ≤I ≤ n-1 is not enough
b)	-	(6) or 2 (10) = total 18 electrons	Generally well understood
c)	Energie	¥ ≜ ¥	The question was to represent the levels on an energy scale, not only to represent the quantum boxes
d)	n=3 l=0 n=3 l=1	m=0 s=± ½ m=-1, 0, +1 s=± ½	Stating that I = 0, 1 or 2 and m = -2, -1, 0, 1, 2 etc is WRONG It was expected to have the set of possible values for m
e)	n=3 l=2 n=5 l=3	m=-2,-1,0,+1,+2 s=± ½ m=-3,-2,-1,0,+1,+2,+3 s=± ½	depending on the corresponding value of I (see on the left)
f)	Pauli: An atom can not have 2 quantum numbers n, l, m and s Hund: pairing electrons with o subshell must be each occupio being occupied by two paired e Klechkowski : subshells are fille	electrons with the same set of values for the opposite spins cost energy : all orbitals of a ed by a single electron before any of them lectrons.	Rules are in general known, even if the names are sometimes mixed up (but no penalty)
	according to values of n for two	o identical values of (n+l)	
g)	₇ N: 1s ² 2s ² 2p ³ ₃₁ Ga: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s	² 4p ¹	

CHEMISTRY Test n°1 18/10/2019 – Some answers and comments

	$\begin{array}{c}_{47} \text{Ag: } 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 5s^1 _{52} \text{Te: } 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 5s^2 \ 5p^4 \end{array}$				
h)	Number of single electrons: 3	Ga: 1	Ag: 1	Te: 2	Representation of quantum boxes and split of electrons may help to answer this question that concerned single electrons. Some confusion with valence electrons.

	Problem 2 : Study of a hydrogen-like ion	Some comments
a)	The energy required to extract the electron from the ion	For an hydrogen-like system, before ionization it was already an ion by definition: stating that the consequence is to end up with an ion is wrong
b)	Transition level $1 \rightarrow \infty$ Smallest λ : Serie's limit	In the Bohr model, the transition is from <u>a level</u> (not a <i>subshell</i> , not an <i>orbital</i>) and involves <u>the</u> unique electron (not <i>an</i> electron)
c) d) e)	$\frac{1}{\lambda} = R_X Z^2 \left(\frac{1}{n^2} - \frac{1}{n^{\prime 2}}\right) \text{ et}$ $E = \frac{hc}{\lambda} \text{ gives}$ $\Delta E_{limit} = E_1 - E_{\infty} = \frac{hc}{\lambda} = hCR_X Z^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) = hCR_X Z^2 = -E_1 \text{with}$ $E_n = 0 \text{ and } E_1 < 0)$ $E_{ionization} = -E_1 = E(ev) * e * N_A * 10^{-3} = 20 990 kJ. mol^{-1}$ $Z = \sqrt{\frac{-E_1(J)}{hCR_X}} \qquad Z=4 \qquad 4Be^{3+}$	Some errors on manipulation of equation. Remember that ΔE is positive, while E_1 or E_n is negative by convention By the way, the relation $E = \frac{hc}{\lambda}$ is not de Broglie's equation as it found in some copies! Conversion eV/J/KJ has led to some mathematical errors Literal expressions were often given, but some mathematical errors were found. Indeed, if <i>c</i> is used in (m/s) then R_X should be expressed in (m ⁻¹); if you keep R_X in (cm ⁻¹), then <i>c</i> should be expressed in (cm/s).
f)	$ E_n - E_{\infty} = \frac{hC}{\lambda} = hCR_X Z^2 \left(\frac{1}{n^2} - \frac{1}{\infty^2}\right) = \frac{hCR_X Z^2}{n^2}$ $\frac{E_1}{n^2} = E_n \text{ (with } E_n < 0\text{)}$	Many of you do not know how to find E_n from Ritz-Balmer. Some confusions between E_1 and $E_{ionization}$ $E_n = \frac{E_1}{n^2} = -\frac{E_{ionization}}{n^2}$ E_1 is the energy level of the hydrogen-like system and not the one for hydrogen : so $E_n \neq \frac{Z^2 E_1}{n^2}$ as found in some copies

	E_1 =-217.60 eV ; E_2 =-54.40 eV ; E_3 =-24.18 eV ; E_4 =-13.6 E_6 =-6.04 eV ; E_7 =-4.44 eV	eV ; E ₅ =-8.70 eV ; Many of you know that $E_n = \frac{E_1}{n^2}$ and where then able to answer this question Careful with the expected precision (to within 0.01 eV)
h)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 → A legend (E(eV) The origin of the energy scale for n →∞ Each energy level (up to n = 7), with the associated energy (value or identification E1)
i)	Absorption up to n = 6 Then a total of 15 rays Represented on the diagram	

	Problem 3 : Hydrogen spectroscopy	Some Comments
a)	$ \begin{array}{c} E(eV) \\ 0 \\ -0,54 \\ -0,85 \\ -1,51 \\ -3,40 \\ -3,40 \\ -13.60 \\ Sit. 1 \\ Sit. 2 \\ Sit. 3 \\ Sit. 3 \\ Sit. 3 \\ Sit. 3 \\ n=1 \\ n=2 \\ n=1 \\ n=1 \\ n=1 \\ n=1 \\ n=1 \\ n=1 \\ n=2 \\ n=1 \\ $	 This diagram requires : A legend (E(eV) The origin of the energy scale for n →∞ Each energy level (up to n = 5), with the associated energy (value or identification E₁)
	Situation 1 : $E_{ex}=12400/1000=12.40eV= E_{arrival}-E_1 $ such that $E_{arrival}=-1.20 eV$ This does not correspond to the energy of a level for hydrogen: bet the energy is quantified, there is no excitation at all for hydrogen. No absorption thus no emission : the corresponding spectrum is spectrum E	The value of the wavelength given in the subject is the

	Situation 2 : $E_{ex}=12400/972.5=12.75 \text{ eV} = E_{arrival} - E_1 $ such that $E_{arrival} = -0.85 \text{ eV}$ that is the energy of level 4. There is thus absorption from n = 1 to n = 4. This will lead to a total of 6 possible emission lines. However, among them, only two belong to the visible domain (1.55eV <visible<3.1ev) that<br="">belong, for hydrogen, to the Balmer's series (E₄-E₂=2.55ev et E₃- E₂=1.89ev). The only spectrum with only 2 lines is spectrum C.</visible<3.1ev)>	Many of you have realized that there was absorption in this situation, but has omitted the information that the detector recorded <i>only lines in the visible domain</i> . By the way, there was some confusion on the transition during absorption: when describing the transition, it involves the transition from n = 1 to n = 4, and not from n = 4 to n = 1!!!
с)	Situation 3 :The range of energy associated to the range of frequency is 11.60 eV \leq $E_{ex} \leq 13$ eV, thus an interval for the arrival level that is -2.00eV \leq $E_{arrival} \leq$ -0.60eV.Thus absorption occurs with two possible transitions: from n = 1 to n = 3and from n = 1 to n = 4.This will lead to the same number of emitted lines as in situation 2, andthus the same 2 transitions than belong to the visible domain: from n = 4to n = 2, and from n = 3 to n = 2.Thus same spectrum with only 2 lines : spectrum C.	Same comments as before
d)	E ₄ -E ₂ =2.55eV, thus using the provided equation, λ_{4to2} = 486.3nm E ₃ -E ₂ =1.89eV, thus using the provided equation, λ_{3to2} = 656.1 nm	