	Problem I : Hydrogen like ions	
Question	Answer	Comments
1)	« Excitation » involves a transition from n = 1 to a upper level. If we get 10 rays in the subsequent emission spectrum, the upper level is n = 5 (see diagram) as transitions in "cascade" are possible. E(eV) G G E(eV) G G G G G G G G	 No calculation was needed here, the use of the diagram was enough. In the Bohr Model, only the main quantum number "n" is relevant: the levels should then be defined by n or En. A title and captions are compulsory when presenting a diagram (each level should be defined by either n or En).
2)	The identification of the hydrogen-like system consists in defining the value of Z, remembering that it contains only 1 electron. Thanks to Ritz-Balmer equation, considering that $R_X = R_H$, and considering the answer of question 1 (transition : 1 \rightarrow 5) we can determine the value of Z: $\frac{1}{\lambda_{1\rightarrow5}} = Z^2 \cdot R_X \cdot \left(\frac{1}{1^2} - \frac{1}{5^2}\right)$ with $\lambda_{1\rightarrow5} = 105.53$ Å Value : Z = 3 thus ${}_{3}Li^{2+}$	 Error on the equation (see dimension!!) Error on the manipulation of the equation Careful: the value of R_x provided is expressed in cm⁻¹ while λ is in Å Some students actually found the value of Z, but the hydrogen-like ion contains only 1 electron!!!

2020-2021 Final exam Chemistry – Thursday January 28th 2021 - Correction and comments

Global demonstration :

3)

$$E_{n \to n'} = \frac{hc}{\lambda_{n \to n'}} = hcZ^2 \cdot R_X \cdot \left(\frac{1}{n^2} - \frac{1}{n'^2}\right)$$

Ionization : $E_{1 \to \infty} = hcZ^2 R_X = |E_1 - E_{\infty}|$
Conventions : $E_{\infty} = 0$ and Energy values being negative
 $E_{1 \to \infty} = -E_1 = hcZ^2 R_X$
Back to equations :
 $E_{n \to \infty} = -E_n = \left(\frac{hcZ^2 \cdot R_X}{n^2}\right) = \left(-\frac{E_1}{n^2}\right)$
To express in eV, it is needed to divide by "e", then the values
can be computed
 $E_1 = -122.4 \text{ eV}, E_2 = -30.6 \text{ eV}, E_3 = -13.6 \text{ eV},$
 $E_4 = -7.7 \text{ eV}, E_5 = -4.9 \text{ eV}$

- « Establish the expression » implies to start from the global equations and to recall the conventions
- Because the values are all negative, $E_{1
 ightarrow \infty} = -E_1$ and

$$E_{1\to\infty}\neq E_1$$

 Too many "arrangements" with equations were observed in this question (a value that was positive that miraculously turns positive etc...) Nothing magical was expected here, only a rigorous demonstration....

Question	Answer	
1)	Electronic configuration ns ² np ⁴ (with n=2	- Globally well answered
	for O and n=3 for S). 6 valence electrons for both elements.	 However, some of you didn't write the configuration and thus
	Thus same column, but different period	started next questions with a wrong number of valence electrons for
	As n=3 for sulphur, extension of octet rule may apply :	S : obviously everything is thus wrong
2)		 When starting with the correct number of valence electrons, globally well answered.
	en V, < 120° triangulaire 120°	- Some of you wrote structures with respecting strictly the octet rule
	$\begin{array}{ccc} & & & -2/3 \\ & & & & & O^{\setminus} \\ & & & & O^{\setminus} \\ \hline & & & & O^{\oplus} \\ \hline & & & & $	for S thus with extra charges; however, as the extension of the octet rule is possible, the extension of the octet rule is preferred to limit
		the number of formal charges: the structures with extra charges are
		not to be considered anymore (thus wrong answers)
	1/2	 In some answers were sometimes given inconsistent information
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(examples : a structure can not be linear AND bent at the same
		time!!! A structure can not be planar AND tetrahedral at the same
		time!!! A structure that is planar triangular can not have an angle of
		109°!!! A structure with 4 bondings groups cannot be trigonal!!!
		Etc

	Problem III : Undulatory model of bonding, intermolecular interactions	
Question	Answer	Comments
1)	C1,C8, C9 : 3 groups thus sp ²	Generally well answered
	C7, C10: 4 groups thus sp ³	
2)	With $Z = 7$, the electronic configuration is $1s^2 2s^2 2p^3$	Many of you did not consider the lone pair of electrons on
	N owns thus 5 valence electrons (a pair of electrons + 3	N, counting only the 2 bonding groups
	single electrons), and should strictly verified at best the	
	octet rule (n = 2).	In some answers were sometimes given inconsistent
	In the structure, we see that N is involved in a double bond	information (examples: sp ³ AND a double bond???)
	with C8 and in a single bond with N2 . The lone pair is not	sp ¹ AND (1 double bond + 1 single bond)
	presented but obviously exists!!	
	Thus: N1 3 groups (2 bondings + 1 lone pair) : sp ² ,	
	 Between C8 and N1 : double bond thus 1σ and 1π bonds, Each atom being hybridized sp² σ bond involves sp²-sp² π bond involves p_z-p_z 	
		Regarding the π bond, it involves unhybridized p orbitals
		that are necessarily parallel with each other, thus along
		the same axis (for example, can't be $p_x - p_y$,).
3)	Hydrogen interaction with the H of the OH group	

	Problem IV : Crystallography	
Que	Answers	Comments
stion		
1)	The crystal is neutral, we thus need as many positive charges as	
	negative ones: because there is a total of 6 positive charges, we	
	need x = 3	
2)	Ionic bonds are involved	In the description of the structure, it is said that ions are involved!
3)	Ba [*] O [*] O [*] Ba [*] Ba [*] Ba [*] Ba [*] Ba [*]	Globally well represented
4)	Thanks to the description of the cell, there are :	
	Ba ²⁺ : 8*1/8 = 1	
	Ti ⁴⁺ : 1	
	$O^{2-}: 6*1/2 = 3$	
	Considering that the ceramic is BaTiO ₃ , there is thus 1 BaTiO ₃ /cell	
5)	Tangency :	Here "tangency" means that the we must have equality:
	av2 <mark>=</mark> (2r _{Ba2+} + 2r _{O2-}) thus a = (2x135+2x140)/ v2 = 389 pm	the sign is indeed strictly equal (=) and can't be superior
	a <mark>=</mark> (2r ₀₂₋ + 2r _{Ti4+}) thus a = 2x140 + 2x68 = 416 pm	or equal (≥)
	Non Tangency :	Here "non tangency" means that the we can't have
	aV3 <mark>></mark> 2rBa ²⁺ + 2rTi ⁴⁺ thus a > (2x135+2x68)/ V3	equality: the sign is indeed strictly superior (>) and can't
	→ a > 234 pm	be superior or equal (≥)
	(av2)/2 <mark>></mark> 2r ₀₂₋ thus a > (4x140)/ v2 → a > 395 pm	
		Regarding the O ²⁻ tangency: some of you took the edge
		(as the anions are at the centre of two opposite faces):

		but there is the Ti ⁴⁺ at the centre of the cube which makes it impossible for the O ²⁻ to be tangent along this direction! With the help of the scheme (question 2): you should consider the distance between the centres of two faces sharing one edge, which can be determined using either Pythagorean or Thales theorems
6)	The only parameter value that suits all the 4 previous conditions (tangency and non-tangency) is the biggest one: a = 416 pm . This means that O ²⁻ and Ti ⁴⁺ are tangent while Ba²⁺ and O²⁻ are not	
7)	<u>Regarding Ba²⁺</u> : as this type of cations occupy a corner of a cube, (shared by 8 cubes) one Ba ²⁺ is thus equidistant with 3 O ²⁻ anions per cube (the ones located at the centre of the faces making the corner); as each face is shared by two cubes, the anions counts for a total of (3/2) anions per cube (indeed we need to divide by 2 other we would count each O ²⁻ twice!!). Because a corner is shared by 8 cubes, there is a total of (3/2) x 8 = 12 O ²⁻ anions equidistant to one Ba ²⁺ . The coordination number of Ba²⁺ is thus 12. <u>Regarding Ti⁴⁺</u> : as this type of cation occupies the centre of the cube, it is thus equidistant to the 6 anions located at the centre of the faces making the cube. No other oxygens were equidistant. The coordination number of Ti⁴⁺ is thus 6.	While the coordination number for Ti ⁴⁺ was globally well answered, the one for Bi ²⁺ was more difficult.
8)	The atomic packing factor or compacity, is the fraction of volume in a crystal that is occupied by constituent particles. It is	Knowing the definition, this question uses the result of Q.2 (population) and Q.6 (the cell parameter).

	calculated by comparing the volume of the atoms/ions occupying the cell and considered as hard spheres to the volume of the cell. $C=4/3\pi((rBa^{2+})^3+(rTi^{4+})^3+3 (rO^{2-})^3)/a'^3$ = $4/3\pi (135^3+68^3+3x140^3)/401^3-416^3 = 0,71564$	Here you should remember that you may have 5 ions per cell which are different from each other! You should thus consider separately the volume occupied by the Ti ⁴⁺ (1 per cell) Bi ²⁺ (1 per cell) and O ²⁻ (3 per cell) ions, respectively.
9)	$\rho = (Z(BaTIO3) \times MBaTIO3)/(N_A xa'^3)$ with a' = 416 pm and Z = 1 formula per cell $\rho = [1 \times (137,33+47,867+15,999*3)]/[6,022.10^{23}.(416.10^{-10})^3]$ = 5.38 g/cm ³	Here, the result was required in g/cm ³ (see text)
10)	i i i i i i i i i i	Globally well represented here

	Problem	V : Chemical transformations
Question	Answer	Comments
	To see whether there is a change or not, we must compare the value of Q to K with $Q_0 = \frac{[CH_3COO^-].[HCOOH]}{[CH_3COOH].[HCOO^-]}$ - If Q ₀ <k<sub>298 : a change occurs from left to the right if all the reagents on the left are present - If Q₀ = K₂₉₈ : no change - If Q₀>K₂₉₈ : a change occurs from the right to the left if all the reagents on the right are present</k<sub>	Generally well-answered Remember though that $K_{298}^{0} = \frac{[CH_{3}COO^{-}]eq.[HCOOH]eq}{[CH_{3}COOH]eq.[HCOO^{-}]eq}$ The value provided (0.1) was thus for this literal expression
1)a)	Q ₀ →+∞ and Q ₀ >K ₂₉₈ : there is a change, from the right to the left -hand side	 Q₀ doesn't need to have a finite value. When Q₀ tends to infinity, it is obviously bigger than K₂₉₈: thus the system tends to evolve to the left, as long as the reagents on the right are present!!! Some of you had reasoned with writing the reaction in the other way around (see below reaction 2)! Good idea!! CH₃COO⁻ + HCOOH ↔ CH₃COOH + HCOOH (reaction 2) However, remember then that not only the literal expression of Q is inverted in that case (for reaction written in way 2, it becomes Q₀ = CH₃COO⁻]. [HCOOH]

		but the one of the equilibrium constant is also inverted!!! Thus, the equilibrium constant of reaction 2 should be (1/ K ₂₉₈ °) the value of which is thus 10!!
1)b)	$Q_0=1$ and $Q_0>K_{298}$: there is a change, from the right to the left -hand side	
1)c)	Q ₀ =0.1 = K ₂₉₈ : no change ; system does not evolve (at « equilibrium)	
1)d)	$Q_0=0$ and $Q_0 < K_{298}$: there is a change, from the left to the right-hand side	Some of you said that as $Q_0 = 0$, nothing would happen. Again the condition is on the comparison between Q_0 and K_T : $(Q_0 = 0$ is not a particular situation!!)

	Problem VI – Redox reactions	
	Answer	Comments
<u>1)</u>	$FeSO_4 \rightarrow Fe^{2+} + SO_4^{2-}$	Some weird answers were given here weird in particular considering
		that in Problem II, the formulae of the sulfate ion was provided in the
		text!
	As a result, in the condition of the exercise, when the reaction is carried out, we have in presence at the same time the followin species:	
	 K⁺ and MnO₄⁻ resulting from the dissolution of KM 	nO₄
	 Fe²⁺ and SO4²⁻ resulting from the dissolution of FeS 	6 0 4
	Then, to identify which reaction takes place, you should be logical and congruent with your own answer (Q1). At this stage, E_{2}^{2+} is the only species involving iron : there is no neutral iron (Eq)!! But many of you wrote after a reaction inv	
	Fe as a re	actant with MnO_4^- ????
2)	$MnO_4^- + 8H_3O^+ + 5e^- \rightarrow Mn^{2+} + 12H_2O$	There was nothing to invent here, just be logical and use the data
	Oxidation number of [Mn] in MnO4 ⁻ : +VII	provided.
	Oxidation number of [Mn] in Mn ²⁺ : +II	
	As the oxidation number of Mn is reduced, the half-	The only redox couple involving MnO_4^- is MnO_4^-/Mn^{2+} , where MnO_4^- is
	reaction is Reduction	the oxidized form. Because MnO_4^- is the reactant (see text!), it disappears into Mn^{2+} along the reduction process.
	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ Oxidation	As a redox reaction is matched set, there is an oxidation half-reaction
	Oxidation number of [Fe] in Fe ²⁺ : +II	that involves the other reactant that is necessarily Fe ²⁺ (see Q1, plus
	Oxidation number of [Fe] in Fe ³⁺ : +III	no redox couple involving SO ₄ ²⁻).
	As the oxidation number of [Fe] increases, the half-	As a consequence, Fe ²⁺ should be the reduced form of the other redox
	reaction is Oxidation	couple. Among the 3 couples provided involving "iron species", there is one and only one that uses Fe^{2+} as the reduced form : the Fe^{3+}/Fe^{2+} couple.

<u>3)</u>	$MnO_{4^{-}} + 5Fe^{2+} + 8H_{3}O^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 12H_{2}O$	No penalty if the reaction was equilibrated without using $8H_3O^+$ but rather $H^+_{(aq)}$
	MnO ₄ ⁻ is the oxidized form of the redox couple with the highest standard potential : it is the oxidant or oxidizing species of the reaction. In the meantime, Fe ²⁺ is the reductant or reducing species of the reaction	
	According to the half-reaction of reduction, 5 moles of electrons are exchanged per mole ofMnO ₄ ⁻ : 5	
<u>4)</u>	According to the global redox reaction, the relationship between the number of moles of Fe^{2+} and the one of MnO ₄ ⁻ upon reaction is : (nFe ²⁺)/5 = (nMnO ₄ ⁻ /1) As the reaction is total, by determining the amount of nMnO ₄ ⁻ needed to completely react with Fe ²⁺ , we can get the amount of FeSO ₄ . nMnO₄⁻ =[MnO ₄ ⁻] x V(MnO ₄ ⁻) = 0.025x25 = 0.625mmol Thus nFe²⁺=5 x nMnO ₄ ⁻ = 3.125 mmol According to Q1, because FeSO ₄ is a strong electrolyte : nFe²⁺ = n FeSO ₄ = 3.125 mmol mFeSO ₄ = n FeSO ₄ x M(FeSO ₄)= 3,125x 151,9 = 474,7 mg =475 mg In 1.00 g of S1, there is actually 475 mg of FeSO ₄ .	 Many confusions were observed here: Confusions in the concentration and volume of permanganate to determine the corresponding number of moles The most often encountered error was about the molar mass: Again, the question was about the weight of FeSO₄ and thus require the use of your result in Q1 and the molar mass of FeSO₄. Too many of you used the molar mass of FeSO₄. Too many of you used the molar mass of Fe here (with some explanations on how we could neglect the weight loss associated to the loss of two electrons!!!)

	Problem VII – acid-base reactions	
	Answer	Comments
1)	$ClCH_2COOH + H_2O \leftrightarrow ClCH_2COO^- + H_3O^+$	Here it is about whether you know or not the definition of:
	$K_{T}^{\circ} = \frac{[ClCH2COO-]eq[H3O+]eq}{[ClCH2COOH]eq} = Ka = 10^{-2.85}$	 The dissociation reaction of an acid in water or not The expression of the equilibrium constant of the
		corresponding reaction.
		Note that here water is not only a reactant but it is also
		the solvent: as a consequence, its activity is 1 and thus it
		doesn't appear in the expression of the equilibrium
		constant (and please, do not write that the
		concentration of water is 1 mol/L which is totally
		wrong!!! Indeed, in a diluted solution where the main
		component is water, in 1 liter of solution we have
		around 1000 g of water, which leads to a concentration
		of 55.6 mol/L!!)
2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The ICE table can be considered in either number of moles or concentration as the volume is constant and set at 1 L.

	The only possible solution among the two is x = 0.007727 M t _{eq} 0.0423 - 0.00773 0.00773 [CICH ₂ COOH] _{eq} =42.3mM [CICH ₂ COO ⁻] _{eq} =[H ₃ O ⁺]=7.73mM (3 cs) [HO ⁻] = $\frac{Ke}{[H_3O^+]} = \frac{10^{-14}}{0.00773} = 1.29.10^{-12}$ M	Because we can neglect the impact of self-dissociation of water on providing some H_3O^+ , the ICE table is quite simplified here Unfortunately, many numerical errors were found here in particular because of a misuse of your calculator (which means that most of you are not familiar with the manipulation of the calculator)
3)	pH = $-\log [H_3O^+] = 2.1$ clCH ₂ COOH 0 pH 0 14 2,85 2,1	 Look at the answer and realize that the predominance diagram must include the following information: What is presented along the abscissae scale (in other word, "pH") The extrema values (0, 14) The pKa for the couple The species that predominates in its corresponding domain Obviously the pH value
4)	$\tau = x/n_0$ $\tau = 0,00773/0,0500 = 0.0155 = 15.5\%$	Here again the question is whether you know what the "conversion" of a reactant means: it is nothing but "how much has actually being converted" (in other word, how much as disappeared) compared to the maximum amount that can be converted considering the operation conditions (the limiting reactant when applicable etc)
5)	$ClCH_2COOH + H_2O \leftrightarrow ClCH_2COO^- + H_3O^+ $ (V=1L)	

t0	C ₀	-	/	/						
teq	C ₀ /2	-	C ₀ /2	C ₀ /2]					
	•				If the					
conve	rsion is 50%	, then v	ve know the	e composition of the	system					
at equ	ilibrium (se	e ICE ta	ble). Accor	dingly, using the exp	oression					
of the	equilibrium	consta	ant:							
	$\left(\frac{C0}{2}\right) * \left(\frac{C0}{2}\right) \qquad C$) OE							
K T =	$\frac{\underline{C}}{\underline{C}} = \frac{1}{2}$	$\frac{3}{2} = 10^{-2}$	2.85							
Meani	ng that $C_0 =$	0.0028	83M							
Th pH	of the solut	ion wo	uld then be	:						
pH = -l	og[H₃O⁺] =	-log(C ₀ ,	/2) = pKa=2	.85						