CHEMISTRY Test n°1 16/10/2019 – Some answers and comments

Problem 1 : Preliminary question	Some comments
$E(J) = \frac{hc}{\lambda} \text{ with h in J.s, c in m/s and } \lambda \text{ in m.}$ To express in eV, and having $\lambda(\text{Å}) = \lambda(\text{m})*10^{10}$ $E(eV) = \frac{E(J)}{e} = \frac{hc}{\lambda \cdot 10^{-10} \cdot e} = \frac{12400}{\lambda (\text{A}^{\circ})} \text{ with h in J.s, c in m/s and } \lambda \text{ in Å.}$	The relation $E = \frac{hc}{\lambda}$ is not de Broglie's equation as found in some copies! (no penalty)
n : integer values ≥ 1or1, 2, 3, 4nl : integers values 0 ≤ l ≤ n-1or0, 1, 2, 3, 4(n-1)m :integer values $-l ≤ m ≤ +l$ or $-l, -l+1, 0, l-1, l$ s : ± 1/2	
Problem 2 : Indentification of a hydrogen-like system	Some comments
D) In the absorption spectrum, the transition with greater energy corresponds to ionization : transition level : $1 \rightarrow \infty$ Ritz Balmer applied to hydrogen-like systems: $\frac{1}{\lambda} = R_X Z^2 \left(\frac{1}{n^2} - \frac{1}{n'^2}\right)$ thus here : $n = 1$ and $n' \rightarrow \infty$ $\frac{1}{\lambda_{1 \rightarrow \infty}} = R_X Z^2$ $Z = \sqrt{\frac{1}{R_X \lambda_{1 \rightarrow \infty}}} = \sqrt{\frac{1}{109677,8 * 25,3310^{-8}}} = 6$ With $R_X \sim R_H$ (cm ⁻¹) and λ (cm) $E = \frac{hc}{\lambda}$ or from E(eV) = $\frac{12400}{\lambda(A^\circ)}$ result of question 1 : $E_i = 489,54 \text{ eV} = 489,5 \text{ eV}$	In the Bohr model, the transition is from <u>a level</u> (not a <i>subshell</i> , not an <i>orbital</i>) and involves <u>the</u> unique electron (not <i>an</i> electron) By the way, the relation $E = \frac{hc}{\lambda}$ is not de Broglie's equation as it found in some copies! (no penalty) Literal expressions were often given, but some mathematical errors were found. Indeed, if λ is used in (m) then R_x should be expressed in (m ⁻¹); if you keep R_x in (cm ⁻¹), then λ should be expressed in (m).

Problem 3 : Study of Beryllium		Some comments
	Electronic configuration of Be 1s ² 2s ²	For this; you should apply the Building up principle and
	$1s^2$: (n = 1, l = 0, m _l = 0; s = + ½) and (n = 1, l = 0, m _l = 0; s = - ½)	know how to compute and the meaning of each quantum number:
	$2s^2$: (n = 2, l = 0, m _l = 0; s = + ½) and (n = 2, l = 0, m _l = 0; s = - ½)	n : integer values ≥ 1 or 1, 2, 3, 4n I : integers values 0 ≤l ≤ n-1 or 0, 1, 2, 3, 4(n-
		m :integer values $-l \le m \le +l$ or $-l$, $-l+1$ 0, $l-1$, l s : $\pm 1/2$
b)	Hydrogen-like ion (HLI) derived from Be contains only 1 electron: Be ³⁺ 1s ¹	
	According to Ritz-Balmer equation generalized to HLI	
	$\Delta E_{n \to \infty} = \frac{hc}{\lambda_{n \to \infty}} = hcR_X Z^2 \left(\frac{1}{n^2} - 0\right) = E_n - E_\infty = 0 - En = -En \text{ as En<0}$	
	And E∞ = 0	
	ifi n =1 $E_1 = -hcR_XZ^2$.	
	For any value of n : thus $E_n = -\frac{hcR_XZ^2}{n^2} = \frac{E1}{n^2}$	
	E ₁ = - 217.60 eV	
	E ₂ = - 54.40 eV	
	E ₃ = - 24.18 eV	
	E ₄ = -13.60 eV	

	$\lambda_{1-3} = \frac{12400}{E_3 - E_1} = 64,11 \text{ Å} = 64.1 \text{ Å}$ $\lambda_{1-4} = \frac{12400}{E_4 - E_1} = 60,78 \text{ Å} = 60.8 \text{ Å}$	
f)	Ionization energy is by definition:	
	$E_i = E_1 - E_{\infty} = 0 - E_1 = -E_1 = 217.6 \text{ eV}$	
g)	Drawing of 6 emission lines if starting from n = 4	If we consider the emission lines that may appear if one starts
	$\mathbf{E}_{n'} - \mathbf{E}_{n} = \frac{12400}{\lambda_{n' \to n}}$	from $n = 4$, then remember that emission with intermediate steps may also happen: thus if the first line is from (4 to 3), then we may have other transitions such as (3 to 2) and (2 to 1) or (3
	$\lambda_{4\rightarrow1}$ = 60.8 Å ; $\lambda_{3\rightarrow1}$ = 64.1 Å ; $\lambda_{2\rightarrow1}$ = 76.0 Å	to 1). Etc Thus, there is a total of 6 possible lines if starting from n = 4.
	$\lambda_{4\to 2}$ = 303.9 Å ; $\lambda_{4\to 3}$ = 1172.0 Å ; $\lambda_{3\to 2}$ = 410.3 Å	
h)	All lines belong to the UV domain	

Problem 4 : Hydrogen spectroscopy	Some Comments
We deal first with a hydrogen atom in its fundamental state.	
From Ritz Balmer equation (see previous relationship, we can settle that : $E_n = -\frac{hcR_H}{n^2} = \frac{E_1}{n^2}$	
With E $_{1}$ = -13.60 eV	
E ₂ = -3.40 eV	
E ₃ = -1.51 eV	
E ₄ = -0.85 eV	
E ₅ = -0.54 eV	
Method a):	
According to Ritz-Balmer, we have for absorption	
$:\Delta E_{1 \to n} = \frac{hc}{\lambda_{excitation}} = hcR_{H} \left(1 - \frac{1}{n^{2}}\right)$	
thus $n = \sqrt{\frac{1}{1 - \frac{1}{\lambda_{excitationR_{H}}}}}$	
For a given $\lambda_{\text{excitation}}$; if we get for n:	
- An integer value, then we get the arrival level and the phenomenon is absorption	
- A fraction, then there is no absorption phenomenon as the excitation energy has to match exactly the energy difference between two levels.	
Method b):	
An absorption corresponds to the transition from $n = 1$ to an upper level, with	
the energy of the incoming radiation being :	
$\Delta E_{1 \to n} (eV) = \frac{12400}{\lambda_{excitation} (Å)} = E_n - E_1 = E_n - E_1$	

$E_n = \frac{12400}{\lambda_{excitation} (\text{\AA})} + E_1$ Considering the value of $\lambda_{excitation}$ and E_1 for H, if E_n corresponds to one of the energy of a level for H, then there is an absorption.	
$\frac{\text{Situation 1 : } \lambda_{\text{excitation}} = 97.25 \text{ nm}}{\text{From method a)}}$ $n = \sqrt{\frac{1}{1 - \frac{1}{\lambda_{excitationR_{H}}}}} = 4$ There is thus absorption from n = 1 to n = 4	Some confusion here : - Many of you have used the value of the <i>incoming</i> <i>radiation</i> and concluded that it does not belong to the visible range: the reasoning is WRONG. The value of the wavelength given in the subject is the one of the incoming radiation (that lead to excitation or not) and not the one of the emitted photon.
From method b) $E_{ex}=12400/972.5=12.75 \text{ eV} = E_{arrival} - E_1 $ such that $E_{arrival} = -0.85 \text{ eV}$ that is the energy of level 4. There is thus absorption from n = 1 to n = 4 .	By the way, there was some confusion on the transition during absorption: when describing the transition, it involves the transition from n = 1 to n = 4, and not from n = 4 to n = 1!!!
Situation 2 : $\lambda_{\text{excitation}} = 101.39 \text{ nm}$	
From method a) $n = \sqrt{\frac{1}{1 - \frac{1}{\lambda_{excitationR_{H}}}}} = 3.15$ There is thus no absorption as the arrival level is not an integer value From method b) $E_{ex}=12400/10139 = 12.23 \text{ eV} = E_{arrival} - E_1 $ such that $E_{arrival} = -1.37 \text{ eV}$ that does not correspond to any possible arrival level.	
There is thus no absorption	

