2021-2022 CORRECTION AND COMMENTS – Test 2 CHEMISTRY 1

Questions	Answers and comments			
Exercise I : 4	Exercise I : 4 points			
1.	Population :	Globally well answered.		
	Atoms A : (8 x 1/8 + 6 x ½) = 4	(even if some of you have not considered the B		
	Atoms B: (12 x ¼ + 1) = 4	atom located at the very centre of the cube)		
2.	APF : fraction or percentage of the volume really occupied by the atoms then assimilated to spheres compared to the total volume of the cell	Definition is important : atoms are considered as hard spheres (otherwise how to express the		
	APF value = $\frac{4 \times \frac{4}{3} \pi (r_A^3 + r_B^3)}{a^3} = \frac{4 \times \frac{4}{3} \pi \times (1.81^3 + 0.97^3)}{5.56^3} = 67\%$	volume of the atoms?)		
	APF value = $\frac{3}{a^3} = \frac{3}{5,56^3} = 67\%$	And careful with the expression of the volume of a sphere!! (many errors here!!)		
		Moreover some of you have computed the value of the cell parameter considering that the atoms of A were tangent		
		 Value a was provided in the text!! It is not said that the A atoms are tangent in a ny direction, or that the A atoms organize in a close-packed structure : you can't consider the tangency condition then! 		
		Some of you got an APF value bigger than 1. Considering the definition, is that logical???		

3.	Definition of density $\rho = \frac{m}{V} = \frac{nA \times MA + nA \times MA}{V}$	Many errors found here !
	with : n_A and n_B = population of atoms A and B in the cell, respectively M_A and M_B = molar mass of A and B in g/mol N_A = Avogadro's number = 6.022 10 ²³ mol ⁻¹	Just to make sure : there are 4 atoms of A and 4 atoms of B. It is true that there is a total of 8 atoms in the cell. HOWEVER: $(4M_A + 4M_B) \neq 8 (M_A + M_B)$
	V = volume of the cell = a ³ $\rho = \frac{4 \times (M_A + M_B)}{N_A \times (a)^3} = \frac{4 \times (23 + 35,5)}{6,022 \ 10^{23} \times (5,56x 10^{-8})^3} = 2,26 \ g. \ cm^{-3}$	
Exercise II	: 15 points	
1.	$Z=37:1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}5s^{1}$	
	the highest layer of n (5s) contains only 1 electron so it is an alkaline (ns ¹)	
2.	Let x and y be the relative abundance of the ⁸⁵ Rb and ⁸⁷ Rb isotopes, respectively	
	We have a set of two equations such that :	
	x+y=1	
	84.9118x+86.9092y=85.4678	
	The mathematical solution of are such that :	
	x=0.7216 and y = 1-x = 0.2784	
	Natural rubidium is thus made up to 72.16% of ⁸⁵ Rb and 27.84% of ⁸⁷ Rb	
3.	By definition, ionization is the transition of one outermost electron to infinite. Because there is only one electron that occupies the 5s level, the resulting ionization energy is: $E_i = E_{\infty} - E_{5S_{\frac{1}{2}}} = -E_{5S_{\frac{1}{2}}}$ as E_{∞} = 0 by convention	Here, part of the answer consists in remembering that ionization energy, as for any transition, is the difference of energy between 2 levels.

As $E_i = 4.177 eV = -E_{5S_1}$, we confirm that E_{5S_1} =-4.177 eV	The relationship between λ and E was only part
$\overline{2}$ $\overline{2}$	of the answer!!
If Level 5S _{1/2} is defined thanks to the reciprocal of its wavelength $\frac{1}{\lambda_{5S_{\frac{1}{2}}}}$, it means that $\left[E_{5S_{\frac{1}{2}}}\right] = hc.\frac{1}{\lambda_{5S_{\frac{1}{2}}}}$	
Thus $5S_{1/2}: \frac{E_{5S_1}}{hc} = \frac{1}{\lambda_{5S_1}}$ Using the correct units, we find back that $1/\lambda = 33685$ cm ⁻¹	
The Sr, located to the right of the Rb in the same period, will have an ionization energy greater than this one because :	
- it owns one more proton in its core that Rb, it will exert a stronger attraction on its most distant electrons and	
- the electron which it has in more in its electronic cloud will have a weaker screening constant (because it is located on the same layer: cf Slater)	
The Cs is located below Rb so its electronic configuration will be terminated by 6s ¹ . It will have a whole layer of electrons more compared to Rb ; all the extra electrons of the 5 th layer will have a high screen constant.	
Thus E _i (Cs)=3.894 eV < E _i (Rb)=4.177 eV < E _i Sr=5.695 eV	
Some levels are doubled because of the spin orbit coupling, defined by the fifth quantum number j.	
$j = \left l \pm \frac{1}{2} \right $	
For S levels (I = 0)there is only one possible value for $j = \frac{1}{2}$, while for any other value levels, there are 2	
possible values. Ex: for P levels, as $I = 1$, $j = \frac{1}{2}$ or $j = \frac{3}{2}$. The levels is thus doubled, defined as $5P_{1/2}$ and $5P_{3/2}$	
All the transitions are not possible as only the ones that verify the selection rules (provided!!!!) may exist	
	Thus $5S_{1/2}: \frac{E_{5S_{1}}}{hc} = \frac{1}{\lambda_{5S_{1}}}$ Using the correct units, we find back that $1/\lambda = 33685 \text{ cm}^{-1}$ The Sr, located to the right of the Rb in the same period, will have an ionization energy greater than this one because : - it owns one more proton in its core that Rb, it will exert a stronger attraction on its most distant electrons and - the electron which it has in more in its electronic cloud will have a weaker screening constant (because it is located on the same layer: cf Slater) The Cs is located below Rb so its electronic configuration will be terminated by $6s^{1}$. It will have a whole layer of electrons more compared to Rb ; all the extra electrons of the 5 th layer will have a high screen constant. Thus $E_{i}(Cs)=3.894 \text{ eV} < E_{i}(Rb)=4.177 \text{ eV} < E_{i} \text{ Sr}=5.695 \text{ eV}$ Some levels are doubled because of the spin orbit coupling, defined by the fifth quantum number j. $j = \left l \pm \frac{1}{2}\right $ For S levels (I = 0)there is only one possible value for $j = \frac{1}{2}$, while for any other value levels, there are 2 possible values. Ex: for P levels, as I = 1, $j = \frac{1}{2}$ or $j = 3/2$. The levels is thus doubled, defined as $5P_{3/2}$ All the transitions are not possible as only the ones that verify the selection rules (provided!!!!) may

6.	At this sta	age the access	sible data a	are those which 1/ λ is provided. Moreover, it is possible to express	
	the energ	gy as a functio	on of the re	ciprocal of the wavelength $E(eV) = 12400.\frac{1}{\lambda(cm^{-1})}.10^{-8}$:	
	Level	1/λ (cm ⁻¹)	E(eV)		
	4D _{3/2}	14338	-1.778		
	4D _{5/2}	14326	-1.776		
	6S _{1/2}	13553	-1.681		
7.	associate the $5S_{1/2}$ $\Delta j = (0)$	d to a transiti level) to a fur $or \pm 1$). only possible 2: 2: 2:	on from th thest subs	that would appear on the absorption spectrum for Rb. Absorption is ne energy level where the outermost electron is located (for Rb it is in hell such that the selection rules will apply (such that $\Delta l = \pm 1$ AND s in the absorption spectrum are the following:	It is always important to read carefully what is asked. Here the question was NOT about all the possible lines that will be observed considering only the levels listed in the table, but rather "all the possible lines that will be observed in the absorption spectrum considering only the levels listed in the table. And this was in bold in the text

8.	E (eV)	Because the levels were ordered in increasing
	∞ 0	energies in the table, it was possible to order
	-1.225 4 6P _{3/2}	them in the corresponding energy level
	-1.231 $\sqrt{\frac{1}{100}} 6P_{1/2}$	diagram.
	-1.681 -1.681 $-6S_{1/2}//$	To be complete, the energy scale should be
	-1.776 -1.776 -1.776 -1.776 -1.776	provided with the origin level (infinite). At this
	-1.178 //	stage it was possible to provide the values in
		black in the table.
		Transitions on the absorption spectrum all
	-2.587 // <u>7</u> 5P _{3/2}	started from level $5S_{1/2}$ according to question 7.
	-2.615 5P _{1/2}	
	-4.177	
	5S _{1/2}	
9.	According to the selection rules, only 4 lines can be found in the absorption spectrum involving the	It is true that in the table, as a data, 3 levels
	levels gathered in the table.	were described with their values of 1/ λ . This
	As we know how the energy levels order between them (as compared to $5S_{1/2}$, $6P_{3/2}$ is the furthest	means that applying E(eV) = 12400/ λ will
	then comes $6P_{1/2}$ then $5P_{3/2}$ then $5P_{1/2}$) we can order the transitions between each other in terms of	f provide directly the absolute value of the
	energy:	associated energy level.
	$E(5S_{1/2}, 6P_{3/2}) > E(5S_{1/2}, 6P_{1/2}) > E(5S_{1/2}, 5P_{3/2}) > E(5S_{1/2}, 5P_{1/2}).$	
	This means that the wavelengths associated to the transitions can be ordered according to :	But to answer question 9, what was provided
		were the wavelength of an <u>absorption line</u> ,
	$[\lambda_{5S_{1/2} \to 6P_{3/2}}] < [\lambda_{5S_{1/2} \to 6P_{1/2}}] < [\lambda_{5S_{1/2} \to 5P_{3/2}}] < [\lambda_{5S_{1/2} \to 5P_{1/2}}]$	which corresponds to a transition from one
		energy level to another one. As a consequence, when applying $E(eV) = 12400/\lambda$, you do not get
		when applying $E(ev) = 12400/N$, you do not get

The values for the transitions are provided in the text we can thus ascribe them to the associated transitions:

$$[\lambda_{5S_{1/2} \rightarrow 6P_{3/2}} = 420 \text{ nm}] < [\lambda_{5S_{1/2} \rightarrow 6P_{1/2}} = 421 \text{ nm}] < [\lambda_{5S_{1/2} \rightarrow 5P_{3/2}} = 780 \text{ nm}] < [\lambda_{5S_{1/2} \rightarrow 5P_{1/2}} = 794 \text{ nm}]$$

Finally, the energy of a transition is nothing but the exact difference between the two energy levels involved. As an example:

$$\Delta E_{5S_{1/2} \to 6P_{3/2}} = E_{6P_{3/2}} - E_{S_{\frac{1}{2}}} = \frac{12400}{\lambda_{5S_{\frac{1}{2}} \to 6P_{\frac{3}{2}}}} = \frac{12400}{4200} = 2.952eV$$

Thus: $E_{6P_{3/2}} = \frac{12400}{\lambda_{5S_{1/2} \to 6P_{3/2}}} + E_{S_{\frac{1}{2}}} = \frac{12400}{4200} - 4.177 = -1.225 eV$

Same reasoning is applied to the other levels:

$$\begin{split} \mathbf{E}_{6\mathbf{P}_{\frac{1}{2}}} &= \frac{12400}{\lambda_{5\mathbf{S}_{\frac{1}{2}} \to 6\mathbf{P}_{\frac{1}{2}}}} + \mathbf{E}_{S_{\frac{1}{2}}} = \frac{12400}{4210} - 4.177 = -1.231 eV \\ \mathbf{E}_{5\mathbf{P}_{\frac{3}{2}}} &= \frac{12400}{\lambda_{5\mathbf{S}_{\frac{1}{2}} \to 5\mathbf{P}_{\frac{3}{2}}}} + \mathbf{E}_{S_{\frac{1}{2}}} = \frac{12400}{7800} - 4.177 = -2.587 eV \\ \mathbf{E}_{5\mathbf{P}_{\frac{1}{2}}} &= \frac{12400}{\lambda_{5\mathbf{S}_{\frac{1}{2}} \to 5\mathbf{P}_{\frac{1}{2}}}} + \mathbf{E}_{S_{\frac{1}{2}}} = \frac{12400}{7940} - 4.177 = -2.615 eV \end{split}$$

Then the energy level values could be added to the Grotrian's diagram (question 8) values were added in blue color.

To fill the table, once we have the energy of each level, we can then compute 1/ λ for each level

the value of the energy level but the difference between the two energy levels!!!

Around 10% of you have remembered this and thus answered properly this question (while this was the topic of the tutorials made on: spectroscopy of hydrogen, spectroscopy of hydrogen-like systems, and obviously spectroscopy of alkaline metals that has been the topics of 4 or 5 sessions)

	Level	$1/\lambda$ (cm ⁻¹)	E(eV)		
	5P _{1/2}	21109	-2.615	-	
	5P _{3/2}	20863	-2.587		
	6P _{1/2}	9927	-1.231		
	6P _{3/2}	9879	-1.225		
10.	spectrum, meaning th	at the transitions are op are in the red (794 and7		verved in the <u>emission</u> re blue (420 and 421 nm),	Here it is important to realize that what is seen by the audience are the photons <u>emitted</u> by rubidium.
Exercise II	II:16 points				
1.	Electronic configuration	ons:			Globally well-answered
	B 1s ² 2s ² 2p ¹ C 1s ² 2s ² 2	2p ² N 1s ² 2s ² 2p ³ O 1	s ² 2s ² 2p ⁴ F 1s ² 2s ² 2p ⁵		
2.	Electronegativity incre	eases in aperiod from lef	t to right B <c<n<o<f< td=""><td></td><td></td></c<n<o<f<>		
	 b) Wrong as ther not sustain mot sustain mo	The are 10 electrons about ore than 8 electrons (strict = 0) where the the true for C	t the N which belongs to t ct octet rule) O, negative charge on ox (C, N) apply for the atoms	the Cl (octet rule), no charge he 2 nd period and which can ygen , one of the nitrogen has only	a) Well, one of the atom was a chlorine Cl (and not a carbon)

3.	As CI belongs to the same column as F, it owns 7 valence electrons ; as it is in a period which ($n > 2$), it can sustain more than 8 electrons (extension of the octet rule).	
	Because O is more electronegative than Cl, O should own the negative charge. As the global ion owns one negative charge only, it is on the oxygen atom that thus make a single bond with Cl. The following ions can thus be considered :	
	$\begin{array}{ c c c } - \overset{\ominus}{\odot} & -\overset{\ominus}{\odot} & \overset{-\overset{\ominus}{\odot}}{} & \overset{-\overset{\ominus}{\odot}}{} & \overset{-\overset{\ominus}{\odot}}{} & \overset{-\overset{\ominus}{\odot}}{} \\ \hline 1 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	
	No superior ions that would own one negative charge only.	
	b) For the 2nd ion : AX_2E_2 : bent ; $\alpha < 109^{\circ}$	When you have a diatomic assembly, stop talking
	For the 3^{rd} ion, AX_3E_1 : trigonal pyramidal $\alpha < 109$	about the shape!!!!
	For the 4^{th} ion, AX_4 : tetrahedral α = 109	
	c) Mesomeric forms exist	
	for the 2 nd ion: 2	
	for the 3 rd : 3	
	for the 4 th , 4	
4.	In a given ion, the bond length are all equal due to mesomeric formulas	
	Between ions, the bond length are not equal:	
	The longest one is the single bond, found in ion 1.	
	Because of mesomeric formulas, the bond lengths in the other ions are a mix between a single bond and double bond but they are again different:	
	 In the 2nd ion, the real bond length is the exact average between 1 single bond and 1 double bond 	

	 In the 3rd ion, the real bond length is the exact average between 1 single bond and 2 doubles bonds; because a double bond is shorther than a single bond, the averaged value for ClO₃⁻ has to be lower than for ClO₂⁻ Thus, the shortest one is for the 4th ion, which is the closest one to a full double bond (average between 1 single bond and 3 double bonds). 	
5.		
exercise l	: 15 points	
1.	Hybridization state for Carbons from (a) to (f): sp ² Hybridization state for Carbon in the CH ₃ group: sp ³	
2.	$\begin{array}{c} CH_{3} & c & e & f \\ R & a & b & d & f \\ R & a & b & d & f \\ CH_{3} \end{array}$	
	Hybridization state sp ² : result of mixong and recombination of 2s, $2p_x$ and $2p_y$ (for example) to form 3 hybridized orbitals sp ² in the (x,y) plane (as $2p_x$ and $2p_y$ were involved)	
	There is one unhybridized 2p _z orbital on each related carbon	
	The unhybridized p _z orbitals of the 6 Carbons (a to f) organizes such that they are parallel to have a lateral overlap; all these carbons and the H they are bonded to are thus co-planar.	
	Regarding the C of the methyl groups; the frontal overlap between their sp ³ orbital and one sp ² orbital of carbons (a) and (f) necessarily implies that these C of the methyl are also coplanar to all the other carbons.	

	 However, for the methyl groups, C is hybridized sp³, thus this carbon is at the center of tetrahedron-shaped geometry. Thus the Hydrogens can not all be in the same plane as the other atoms. There is still free rotation between C(a) and C(methyl), which makes it possible to have at best 1 hydrogen in the same plane. As a conclusion : all the atoms highlighted in green on the Figure are coplanar except at least 2 of the 3 H of the 	
	methyl groups	
3.	The free rotation around the C_b - C_c bond is impossible because this rotation would lead to the breaking of the lateral overlap represented previously (π bond).	Orbital representation not required in this second case
	The free rotation around the bond C _f - CH ₃ is possible because it does not break the axial overlap of hybrid orbitals involved in this bond.	
4.	Let write the mesomeric formulas involving the delocalization of three π -bonds	Instead of the scheme, it was also possible to
	$R \xrightarrow{CH_3} R \xrightarrow{R} R \xrightarrow{CH_3} R \xrightarrow{H_3C} R$	describe with words the delocalization of the 6 π electrons
	This was enough to justify that the molecule owns 3 conjugated double bonds	
5.	These 5 bonds are in fact identical contrary to what the formula represented in the text suggested (alternating single and double bonds).	
	The resulting bond length is greater than that of a double bond but lower than that of a single bond.	
6.	Some double bonds are not conjugated in each of the molecule!!	No representation of any mesomeric formula was
	We count the number of double bonds involved in an exact alternation of double/single bonds.	expected as the justification
	Phytoene : 3 / Phytofluene 5 / Carotene : 7 / Lycopene : 11	
7.	Energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).	
8.	Litteral formula : $\lambda_{abs} = \frac{hc}{\Delta E_{HOMO-LUMO}}$	
	Phytoene : 287 nm / Phytofluene : 348 nm / Carotene : 395 nm / Lycopene : 502 nm	

	It can be seen that as the energy difference HOMO-LUMO decreases, the absorption wavelength increases and shifts into the visible range (for carotene and lycopene). It can also be related to the number of conjugated double bonds
9.	Calculation of the lycopene concentration in the commercial sample :
	$C_{Lycopène} = \frac{w_{Lycopene} \times m_{total}}{M_{Lycopene} \times V_{total}} = \frac{0.05 \times 0.600}{536.9x1} = 5,59 \times 10^{-5} mol. L^{-1}$
	Let F be the dilution factor to be applied such that $A_{Lycopene}^{502nm} = \varepsilon_{Lycopene}^{502nm} = 0.633$
	The diluted solution (which concentration is noted $C'_{Lycopene}$) should then verify both equations:
	$- C'_{Lycopene} = \frac{C_{Lycopene}}{F}$
	- $A_{Lycopene}^{502nm} = \varepsilon_{Lycopene}^{502nm} \times l \times C'_{Lycopene}$
	Thus $F = \frac{\varepsilon_{Lycopene}^{502 nm} \times l \times C_{Lycopene}}{A_{Lycopene}^{502 nm}} = 15$