

EC Chemistry 1 - Test n°1 - Duration: 1h

No document allowed. All calculators allowed.

Answers must be concisely justified.

The results will be given with the appropriate number of significant digits.

Data:

Rydberg's constant for hydrogen: $R_H = 109677 \text{ cm}^{-1}$

Planck's constant: $h = 6.626 \times 10^{-34} \text{ J.s}$

Elementary charge: $e = 1.602 \times 10^{-19} \text{ C}$

Speed of Light: $c = 2.998 \times 10^8 \text{ m.s}^{-1}$

Mass of the electron: $m_e = 9.10939 \times 10^{-31}$ Kg

Slater's model:

Orbital of the electron	n' <n-1< th=""><th>n'=n-1</th><th>n'=n</th><th>n'>n</th></n-1<>	n'=n-1	n'=n	n'> n
1s	-	_	0.30	0
ns,np	1.00	0.85	0.35	0
nd	1.00	1.00	1.00 for s and p	0
			0.35 for <i>d</i>	

Contributions of electrons occupying orbitals of quantum number n' on the screen constant of an electron that occupies an orbital of quantum number n

Exercise 1. Generalities (6 points)

- 1. For a hydrogen like ion, recall Ritz-Balmer's formula, giving the definition of all the terms.
- 2. Deduce from this Ritz-Balmer's formula the expression of the energies (in J) associated to both the long and the short-wavelength limit of a series of main quantum number n.
- 3. Are 3Li* and 4Be3+ hydrogen like systems? Justify.
- 4. Give the definition of the ionization energy and justify its sign.

Exercise 2. Hydrogen atom (5 points)

The four first wavelengths of the emission visible spectrum of H are $\lambda = 410, 434, 486 \ and 656 \ nm$.

- 1. Give the transitions associated to each wavelength
- 2. Compute for each wavelength the value of the Rydberg's constant (to within 0.1 cm⁻¹). Comment on the obtained values.

The electron of the hydrogen atom is initially excited by an electron characterized by an energy of 4.34x10⁻¹⁸ J.

- 3 Demonstrate that this excitation corresponds to the generation of an ion (to within 0.01 J).
- 4 Compute the speed of the ejected electron.
- Is the ejected electron able to ionize another hydrogen atom taken in its fundamental state?

Exercise 3. Hydrogen-like systems (6 points)

We will now work on a hydrogen-like ion such that Z=4 taken in its fundamental state. We consider that its Rydberg's constant $R_X = 109 \ 677 \ \text{cm}^{-1}$.

- 1. Calculate its ionization energy (to within 0.01 eV). Which spectral domain does it correspond to?
- 2. Compute to within 0.01 eV the energies of the 6 first levels of this ion.

An electromagnetic radiation with wavelengths ranging between 5.97 and 5.89 nm is applied to the same hydrogen like ion.

- 3. What phenomenon is then observed (justify your answer)?
- 4. In which state will then the system be? Which level is reached by the electron?
- 5. From the level determined in question 4 and considering a return to the fundamental state, how many rays may be observed? Justify your answer using a Grotrian's diagram.

Exercise 4. Atomistic (3 points)

- 1. Chromium is located in group 6 and the 4th period of the periodic table. Determine its electronic configuration and atomic number.
- 2. For the element of atomic number Z=30, calculate the screening constant and the effective nuclear charge Z* for an electron of its 2p subshell. Justify the calculation.

End of the exam

