— O © 00 O Uik Wi K-

—_ =

N O U W N

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

LYON

EFS Informatique et Société Numérique 1 IN s N
SCAN - January 2023

Duration: 1h30
Documents and calculator forbidden

Warning : A program that is badly indented, badly commented or with the wrong
choice of variable names will be penalized (up to -1 point).

« Always code as if the guy who ends up maintaining your code will be a violent psychopath
who knows where you live. » John F. Woods

The exercises are independent and can be done in any order.

You are not allowed to use any of the built-in python functions on lists or strings (sum,
min, max, index...) neither slicing. You can use append, len, and the concatenation operator.

Exercice 1 Code reading (3 pts)

(@1.1) What is displayed when the following code is executed ?

def f(x):
return Xxxx

def fonction(a,b):

z =5
r = f(2«xa) + f(b) + z
return r

zZ =2

print(fonction(1l,f(z)))
print(f(z))

Correction:
25
4

(@Q1.2) What is displayed when the following code is executed ?

1=11,2,5,8]
for i in range(1,len(l)):
if 1 %2 == 0:
1[i] = 1[i] + 1[i-1]
else:
1[i] = 1[i] - 1[i-1]
print (1)
Correction:
[1,1,6,2]

0 g O T W N~

CO O U = W N+

N e i e e e e e e
S © 00~ O UL WN = OO

21

(Q1.3) What is displayed when the following code is executed ?

def f(a,b):
return a+b

for 1 in range(4):
S = nn
for j in range(i+l):
S += str(f(i,j))
print(s)

Correction:
0

12

234

3456

Exercice 2 Code Correction (3 pts)

(@2.1) The following program contains 3 execution errors (the code will not run and
raise an error) and 3 coding conventions issues (the code run but does not res-
pect the coding conventions, we do not consider spacing). Identify each error or
issue by indicating : the line number, the type of error and the problem. (e.g. : line
5 (error) the symbol =" has been used in a comparison, when a ‘==" should be used.)

def compute average(my list):
ssum = 0
for i in range(len(my list)):
ssum += my list(i)
return ssum / len(my_list)

from math import sqrt

1=12,1,3,-1]
res =0
def std dev(my list):
avg = compute average(my list)
for value in my list:
res = res + (value — avg) *x 2
return sqrt(res / len(my list))

avg compute average(l)

std = std dev(l, avg)

diff = []

for i in range(len(l)):
diff.append(l[i]-1[1i+1])

Correction:

Ligne 4 : Error : prenthesis instead of brackets for indexing
Ligne 7 : Convention : import in the middle of the code
2

N O U W N

53 7 5/3/4(6(7/8[9]1|2
6 1/9|5 6/71211/9/5/|3/4|8
9|8 6 119/8|3(4(2|5|6|7
8 6 3 8/5/9|7|/6[1|4/2|3
4 8 3 1 412/618(5|3|7/9/|1
7 2 6 71113]9(2/4|8|5|6
6 2|8 9/6(1|5/3|7]|2/8|4
411|9 5 218|7(4(1/9(6|3|5
8 719 3/4|/5(2(8/6(1(7|9
(a) Before the player starts (b) The user has completed the grid

FIGURE 1 — The sudoku puzzle

Ligne 9 : Convention : code in middle of functions

Ligne 14 (or 10) : Convention : res is a global variable (ok si donne comme une erreur)
Ligne 18 : Error : 2 parameters to the function instead of one

Ligne 20 : Error : the range should go up til len(l)-1 to be able to do 1[i+1]

Exercice 3 Functional decomposition : sudoku (4pts)

The sudoku is a puzzle which consists of a grid usually made up of nine rows, nine columns,
and nine boxes that are separated by thicker, darker lines (as seen in Figure 1). Some of
these boxes contain numerals from 1 to 9. To solve the puzzle, a person must fill in all the
empty squares without using the same numeral twice in each column, row, or box, and without
changing the numerals that are already in the grid. There is a unique answer to a given sudoku
and the game is usually created by creating a grid with all the numerals in it and removing a
certain number of them.

The goal of this exercise is to propose a functional decomposition of the sudoku
game.

In this version of the game, we will ask the user to enter a numeral in one of the square at
each turn. If the user enter a numeral that is incorrect, he loses.

We provide you with the following code skeleton that you will use as a basis for you main
program :

grid to play, grid solution = init grid()
to complete

while # to complete:
to complete

to complete

The function init grid() creates the sudoku grid that is shown to the user (grid to play)
and the one containing all the numbers (the solution, grid_solution).
Your functional decomposition should respect the following rules :
— Use between 4 and 6 functions in addition to the given function init grid().
— Only propose the functions that you will use in your main program, we do not ask for
intermediate functions that will be used within these functions
— The program should display, depending on the case :
o "Congratulation, you correctly filled the sudoku grid!"
o "Your last input was incorrect, you lose the game!"

3

0 g O T i W N~

e O ey ey
=~ W N = OO

15

(@3.1) Suggest between 4 and 6 functions that you will use in your functional decompo-
sition. For each function, write a short description of what it does and its inputs
and outputs. An example is shown below for the provided init grid() function.

init grid() : initialize the sudoku grid (9x9) and its solution. It
does not take any parameters and returns the playable grid (with
only some numbers) and the grid of the solution.

(@3.2) Write the main program of the sudoku game by using the functions you suggested
in previous question. Your program should respect the guidelines given above.

grid to play, grid solution = init grid()
lose = False
ended = False
while not lose and not ended:
X, Yy, val = choose number()
grid to play = update grid(grid to play, x, y, val)
display grid()
if grid full(grid):
ended = True
lose = has error(grid to play,grid solution)
if lose:
print(f"Your last input was incorrect, you lose the game!")
else:

print("Congratulation, you correctly filled the sudoku grid!")

1
2

Exercice 4 Code writing : integrating functions (6.5 pts)

In this exercise, we seek to calculate and study the integral of a function using the method
of the rectangles.

The function is numerically defined by two lists x and fx, where X contains the abcissa
coordinates and fx the corresponding values of the function. The sampling of the points is not
necessarily regular : the step between each value of x is not constant. For example the function
f(z) = 22 could be represented by the following two lists :

x=[-1, 0, 2, 3, 4.5]
fx = [1, 0, 4, 9, 20.25]

and is shown graphically in Figure 2 (left).

20.0 X % %%
/1 / /
/0 1.51 , /
17.5 an 7 !
/ H
/ : 1.0 4 / ,/
15.0 / :
/ X Il
/ i 1
12.5 p 051 :
/ x
4 /
10.0 / 0.0 *’
)(
7.5 // —0.5 X[O] !
va I
5.0 ‘ x[11]
.U 7
)(—-1.01 \
2.5 i \\
4 /
X[0]--4=2¢ = -1.5 v
0.0 1 Rk i S
-1 (:) 1 2 3 4 : 0.0 0.2 0.4 0.6 0.8 1.0 12
x[0] x[1] x[2] x[3] x[4]

FIGURE 2 — Left : the function f(z) = x? given in example The height of each rectangle that

X[+ FX[i+1
S 2

starts at x[i] i | Right : a sinusoidal function that crosses 0 several times (used

from Q4.2)

The integral of the curve can be approximated with the rectangle method : the integral is
then defined as the sum of the area of each rectangle. With the example function defined above,
the integral will be computed as the sum of the 4 rectangles shown in Figure 2 (left). The width
of each triangle is the distance between the two sample points while the height is defined as the
middle point of the function :

fxi] + Fx[i — 1]

Xl : .
oo = S li) = xli = 1)

X[o]

With the previous function, the areas of the different rectangles would be [0.5, 4, 6.5, 21.9375]
for a total integral of 32.9375.

(Q4.1) Write the function integral(x, fx) that takes as parameter the two lists defining
the abcissa (x) and values (fx) of the function and that computes the approximate
integral of the function using the rectangle method. The function should return
the computed integral (32.9375 in previous example) and the list of the areas of all
the rectangles ([0.5, 4, 6.5, 21.9375] in previous example).

def integral(x, fx):
liste rectangles = []

© 00 J O O = W

ST W N

00 ~J O U i W N

integral = 0
for i in range(1, len(x)):
width = x[1] - x[i-1]
height = (fx[i] + fx[i-1])/2
liste rectangles.append(widthxheight)
integral += widthxheight
return integral, liste rectangles

We now want to know where the function changes of sign. The program should give the list
of indices ¢ where fx[i] has a different sign from fx[i 4+ 1]. For the function shown in Figure 2
(right), the result would be the list [0,4,6,8,11].

(@4.2) Write a function change sign that takes as parameter the values of the function
and that returns all the indices where the function has changed sign (i where x[i]
has a different sign from fx[i + 1]).

def change sign(fx):
indices = []
for i in range(len(fx)-1):
if (fx[i] < 0) !'= (fx[i+1l] < 0):
indices.append(i)
return indices

Having detected where the function changes sign, we now want to compute the integral of
the different parts of the function, cutting it where the function change sign. If we ask for the
integral of the function shown in Figure 2 (right) cut at indices [0,4,6,8,11], we thus want
the integrals of the 5 subparts of the function depicted in different levels of gray.

(@4.3) Write the function integral_per_part that computes the integral of each subpart of
the function. The function takes as parameters the area of each rectangle (compu-
ted with the integral function) and the indices where each subpart of the integral
should be computed. It returns a list containing the integral of each subpart.

def integral per part(aires,chgt):

seg = []
for i in range(len(chgt)-1):
aire = 0

for j in range(chgt[i], chgt[i+1]):
aire += aires[j]
seg.append(aire)
return seg

(@4.4) Use the functions that your defined to compute and display the integral of the
function between each change of sign. You can use the variables x and fx. You
display should be similar to the one below :

Between -0.01 and 0.31, the integral is 0.33
Between 0.31 and 0.48, the integral is -0.025
Between 0.48 and 0.58, the integral is 0.014
Between 0.58 and 0.95, the integral is -0.28

inte, areas = integral(x, fx)

indices = change sign(fx)

integral parts = integral per part(areas, indices)
6

4
5

N O U W N

N O U W N

=W N

for i in range(len(indices)-1):
print(f"Between {x[indices[i]]} and {x[indices[i+1]]}, the integral
is {integral parts[i]}")

From a starting point X[beg|, we want to compute the integral until the function change
sign. In the example above, if we start at beg = 2, we will compute the integral until x[4] (and
the integral will be the sum of the area of two rectangles).

(Q4.5) Write a function that computes the integral of the function between a given starting
point and the next change of sign. Use the areas of the rectangles that can be
computed with the integral function. If there is no sign change after the starting
point, your function will return the integral until the end of the function.

def area until zero(fx,aires,deb):

aire = 0

i = deb

while i < len(aires)-1 and (fx[i] < 0) == (fx[i+l1l] < 0):
aire += aires[i]
i+=1

return aire

Exercice 5 Code writing : processing sentences (3.5pts)

In this exercise, we will try to modify phrases, for example, change randomly the order of
words in a sentence or exchange words.
We provide you with some functions for which you have the docstring on page 9

(@5.1) Using the functions available page 9, write a code that randomly shuffle the words
of a phrase. Your code will first display all the words from the phrase (each word
on one line) before printing the phrase with the shuffled words. Be cautious, all
the functions might not be useful and you have to initialize all the variable you
might use. An example of display for the phrase "Hello SCAN students" is shown

below.
Hello
SCAN
students

SCAN Hello students
phrase = "Hello SCAN students”

ind = find words(phrase)

display words(phrase, ind)

new _ind = shuffle(ind)

new phrase = move words(phrase,new ind)
print(new phrase)

(@5.2) Write the function extract word whose docstring is given. You do not have to
write the docstring on you copy.

def extract word(phrase, index):
mot extrait = ""
i = index
while i<len(phrase) and phrase[i] !=
7

~N

mot extrait+=(phrase[il])
i+=1
return mot extrait

(@5.3) Write the function display words whose docstring is given. You do not have to
write the docstring on you copy. You will think of using the provided functions if
needed.

def display words(phrase, words):
for i in range(len(words)):
mot = extract word(phrase,words[i])
print(mot)

1
2
3
4
)
6

7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32
33
34

35
36
37
38

39
40
41
42
43
44

Available functions for exercise 5 :

def

def

def

def

def

find words(phrase):
""" Find the positions of words in a phrase
Input:
phrase (string): phrase to analyse
Output:
indices words (list of integers): the position of each word in
the phrase (index of the first letter of the world)

shuffle(numbers):
""" Randomly shuffle a list
Input:
numbers (list): list of elements to shuffle
Output:

new list (list): a list in which all the elements of numbers are
present in a random order

extract word(phrase, index):
""" Extract the word that starts at a given index in the phrase
Ex: extract word("Hello beautiful world",6) => "beautiful"
Input:
phrase (string): phrase to treat
index (int): the index of the first letter of the word to extract
Output:
word (string): the extracted word (does not contain any spaces)

move words(phrase, words):
""" Build a new phrase composed of the words of the phrase that are
placed at indices words (in order)
Ex: move words("Hello beautiful world",[6,0,16]) => "beautiful Hello
world "
Input:
phrase (string): phrase to treat
words (list of int): the indices of the first letter of each word
OQutput:
new phrase (string): a phase composed of the words at indices
words from the given phrase

display words(phrase, words):
""" Display each word of the phrase (defined by their indices) on a

different line
Input:

phrase (string): phrase to treat

words (list of int): the indices of the first letter of each word
OQutput:

None

