
SCAN 1 — S1 — Solution of Math Test #6
Romaric Pujol, romaric.pujol@insa-lyon.fr

June 12, 2017

Exercise 1.

1.

rk(A− I3) = rk





−1 1 0
0 −1 1
−2 1 1



 =
C2←C2+C1

rk





−1 0 0
0 −1 1
−2 −1 1



 = 2.

Hence the matrix A− I3 is not invertible, hence 1 is an eigenvalue of A.

2. If we set X1 =





1
1
1



 we have AX1 = X1, hence X1 is an eigenvector of A associated with the eigenvalue 1.

3.

χA(λ) = det(A− λI3) =

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1
−2 1 2− λ

∣

∣

∣

∣

∣

∣

=
C1←C1+C2+C3

∣

∣

∣

∣

∣

∣

1− λ 1 0
1− λ −λ 1
1− λ 1 2− λ

∣

∣

∣

∣

∣

∣

=
R2←R2−R1
R3←R3−R1

∣

∣

∣

∣

∣

∣

1− λ 1 0
0 −1− λ 1
0 0 2− λ

∣

∣

∣

∣

∣

∣

= −(λ− 1)(λ+ 1)(λ− 2)

Hence the eigenvalues of A are:

• 1 of multiplicity 1,

• −1 of multiplicity 1,

• 2 of multiplicity 1.

4. We already have an eigenvector of A associated with the eigenvalue 1. We now determine an eigenvector of
A associated with the eigenvalue −1:

E−1 :







x+ y =0
y+ z=0

−2x+ y+3z=0
⇐⇒

R3←R3+2R1







x+ y =0
y+ z=0

3y+3z=0
⇐⇒







x= z
y=−z
z= z.

We hence choose X−1 =





1
−1
1



 as an eigenvector of A associated with −1.

Similarly for the eigenvalue 2:

E2 :







−2x+ y =0
−2y+ z=0

−2x+ y =0
⇐⇒







x= z/4
y= z/2
z= z.

We hence choose X2 =





1
2
4



 as an eigenvector of A associated with 2.

Finally, we set P =





1 1 1
1 −2 2
1 1 4



. Since the columns of P consist of three eigenvectors of A associated with

distinct eigenvalues, we know that P is invertible. If we set D =





1 0 0
0 −1 0
0 0 2



 we have A = PDP−1.

Exercise 2.

1.

rk(B − I3) = rk





−1 1 0
0 −1 1
2 −5 3



 =
C2←C2+C1

rk





−1 0 0
0 −1 1
2 −3 3



 = 2.



2.

χB(λ) = det(B − λI3) =

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1
2 −5 4− λ

∣

∣

∣

∣

∣

∣

=
C1←C1+C2+C3

∣

∣

∣

∣

∣

∣

1− λ 1 0
1− λ −λ 1
1− λ −5 4− λ

∣

∣

∣

∣

∣

∣

=
R2←R2−R1
R3←R3−R1

∣

∣

∣

∣

∣

∣

1− λ 1 0
0 −1− λ 1
0 −6 4− λ

∣

∣

∣

∣

∣

∣

= (1− λ)

∣

∣

∣

∣

−1− λ 1
−6 4− λ

∣

∣

∣

∣

= (1− λ)
(

(−1− λ)(4− λ) + 6
)

= (1− λ)
(

λ2 − 3λ+ 2
)

= (1− λ)(λ− 1)(λ− 3)

= −(λ− 1)2(λ− 3).

Hence the eigenvalues of B are:

• 1 of multiplicity 2,

• 2 of multiplicity 1.

Now, from Question 1 and by the Rank–Nullity Theorem we know that the dimension of the eigenspace of B
associated with 1 is dimE1 = 3− rk(B − I3) = 1. We notice that multiplicity(1) = 2 6= dimE1 = 1, hence B
is not diagonalizable.

3. a) • Clearly, BU = U (obtained as the sum of all three columns of B), hence U is an eigenvector of B
associated with 1.

• Also, BW =





2
4

2− 10 + 16



 =





2
4
8



 = 2W , hence W is an eigenvector of B associated with the

eigenvalue 2.

• Finally, BV =





0
1
2



 = U + V , hence (B − I3)V = U .

b) Let x, y, z, a, b, c ∈ R. Then:

B





x
y
z



 =





a
b
c



 ⇐⇒







x− y+ z= a
x +2z= b
x+ y+4z= c

⇐⇒
R2←R2−R1
R3←R3−R1







x− y+ z= a
y+ z= b− a
2y+3z= c− a

⇐⇒
R3←R3−2R2







x− y+ z= a
y+ z= b− a

z= a− 2b+ c

⇐⇒







x=−2a+ 5b− 2c
y=−2a+ 3b− c
z= a− 2b+ c

Hence P is invertible and

P−1 =





−2 5 −2
−2 3 −1
1 −2 1



 .

c) Since the columns of P are U , V and W we have:

BP =





| | |
BU BV BW
| | |



 =





| | |
U U + V 2W
| | |



 .

Now,

P





1
0
0



 = U, P





1
1
0



 = U + V, P





0
0
2



 = 2W,

hence

P−1U =





1
0
0



 , P−1(U + V ) =





1
1
0



 , P−1(2W ) =





0
0
2



 ,

so that

T = P−1BP =





| | |
P−1U P−1(U + V ) P−1(2W )

| | |



 =





1 1 0
0 1 0
0 0 2



 .



4. Let n ∈ N with n ≥ 2.

a) N2 =





0 0 0
0 0 0
0 0 0



 hence, Nn = 0M2(R).

b)

DN =





0 1 0
0 0 0
0 0 0



 , ND =





0 1 0
0 0 0
0 0 0



 ,

hence DN = ND, i.e., N and D commute. Now, T = D +N hence, by the Binomial Theorem,

Tn = (D +N)n

=

n
∑

k=0

(

n

k

)

Dn−kNk

= DnN0 +

(

n

1

)

Dn−1N1
since ∀k ≥ 2, Nk = 0M2(R)

= Dn + nDn−1N

=





1 0 0
0 1 0
0 0 2n



+ n





1 0 0
0 1 0
0 0 2n−1









0 1 0
0 0 0
0 0 0





=





1 0 0
0 1 0
0 0 2n



+ n





0 1 0
0 0 0
0 0 0



 =





1 n 0
0 1 0
0 0 2n



 .

c) Now Bn = PTnP−1, hence

Bn =





1 −1 1
1 0 2
1 1 4









1 n 0
0 1 0
0 0 2n









−2 5 −2
−2 3 −1
1 −2 1



 =





1 n− 1 2n

1 n 2n+1

1 n+ 1 2n+2









−2 5 −2
−2 3 −1
1 −2 1





=





−2n+ 2n 2 + 3n− 2n+1 −1− n+ 2n

−2n− 1 + 2n+1 5 + 3n− 2n+2 −2− n+ 2n+1

−2n− 4 + 2n+2 8 + 3n− 2n+3 −3− n+ 2n+2





Exercise 3.

1.

rk(C − I3) = rk





−2 4 −2
−4 8 −4
−8 16 −8



 = 1

(since all three columns are proportional).

2. Hence, since C − I3 is non-invertible, 1 is an eigenvalue of C. Moreover, by the Rank–Nullity Theorem, the
dimension of the eigenspace associated with the eigenvalue 1 is dimE1 = 3 − rk(C − I3) = 2. Hence we
conclude that the multiplicity of 1 is at least 2.

3. We’re missing one eigenvalue. To determine it we use the trace of C: tr(C) = 1 = 1+ 1+missing eigenvalue.
Hence the other eigenvalue of C is −1. We conclude that the eigenvalues of C are:

• 1 of multiplicity 2,

• −1 of multiplicity 1.

Since dimE1 = 2 = multiplicity(1) and since −1 is of multiplicity 1, we conclude that C is diagonalizable.

Exercise 4.

1. Let λ, λ′ ∈ K with λ 6= λ′. We show that Eλ and Eλ′ are independent by showing that Eλ ∩Eλ′ = {0E}: let
u ∈ Eλ∩Eλ′ . Since u ∈ Eλ we have f(u) = λu and since u ∈ Eλ′ we have f(u) = λ′u. Hence f(u) = λu = λ′u
hence (λ− λ′)u = 0E . Since λ 6= λ′, we have λ− λ′ 6= 0 and we must hence have u = 0E . We conclude that
Eλ ∩ Eλ′ = {0E}.



2. a) Let u = (x, y) ∈ E. Then:

u ∈ E4 ⇐⇒ (f − 4 idE)(u) = 0E ⇐⇒ (−3x− 3y,−3x− 3y) = (0, 0) ⇐⇒ x+ y = 0 ⇐⇒ u = x(1,−1).

We conclude that E4 = Span
{

(1,−1)
}

6= {0E} and that
(

(1,−1)
)

is a basis of E4.

b) Let λ ∈ R \ {4}. Let u = (x, y) ∈ E. Then:

u ∈ Eλ ⇐⇒ (f − λ idE)(u) = 0E ⇐⇒
(

(1− λ)x− 3y,−3x+ (1− λ)y
)

= (0, 0) ⇐⇒

{

−3x+(1− λ)y=0
(1− λ)x− 3y=0

⇐⇒
R2←R2+

(1−λ)
3 R1

{

−3x+ (1− λ)y=0
(

1
3 (1− λ)2 − 3

)

y=0
⇐⇒

R2←3R2

{

−3x+ (1− λ)y=0
(

(1− λ)2 − 9
)

y=0

⇐⇒

{

−3x+ (1− λ)y=0
(λ+ 2)(λ− 4)y=0

⇐⇒
R2←

1
λ−4R2

{

−3x+(1− λ)y=0
(λ+ 2)y=0

Hence the rank of this system is

{

1 if λ = −2

2 otherwise.
Hence

Eλ 6= {0E} ⇐⇒ λ = −2,

and

u ∈ E−2 ⇐⇒ −3x+ 3y = 0 ⇐⇒ x = y ⇐⇒ u = x(1, 1).

Hence a basis of E−2 is
(

(1, 1)
)

.

c) We know that E4 and E−2 are independent. By Grassmann’s Formula:

dim(E4 ⊕ E−2) = dimE4 + dimE−2 = 1 + 1 = 2 = dimE.

Hence, by the Inclusion–Equality Theorem, E4 ⊕ E−2 = E and we conclude that E4 and E−2 are
complementary subspaces in E.

d) Set B =
(

(1,−1), (1, 1)
)

. Since E4 and E−2 are complementary subspaces in E, we conclude that B is a
basis of E. We have:

[f ]B =

(

4 0
0 −2

)

.

Exercise 5.

1. a) A =





1 1
2 −1
1 −1



.

b) B =

(

1 1 1
2 −1 −1

)

.

c) Let (x, y, z) ∈ F . Then

(f ◦ g)(x, y, z) = f
(

g(x, y, z)
)

= f(x+ y + z, 2x− y − z) = (3x, 3y + 3z,−x+ 2y + 2z).

Hence C =





3 0 0
0 3 3
−1 2 2



.

d)

C = AB =





1 1
2 −1
1 −1





(

1 1 1
2 −1 −1

)

=





3 0 0
0 3 3
−1 2 2



 .

2. a) • f(u1) = f(1, 1) = (2, 1, 0) = v1 + v2 hence
[

f(u1)
]

C
=





1
1
0



 .



• f(u2) = f(1,−1) = (0, 3, 2) = −3v1 + v2 + 2v3 hence
[

f(u1)
]

C
=





−3
1
2



 .

Hence

A′ =





1 −3
1 1
0 2



 .

• g(v1) = (1, 2) = 3
2u1 −

1
2u2 hence

[

g(v1)
]

B
=

(

3/2
−1/2

)

.

• g(v2) = (2, 1) = 3
2u1 +

1
2u2 hence

[

g(v1)
]

B
=

(

3/2
1/2

)

.

• g(v3) = (3, 0) = 3
2u1 +

3
2u2 hence

[

g(v1)
]

B
=

(

3/2
3/2

)

.

Hence

B′ =

(

3/2 3/2 3/2
−1/2 1/2 3/2

)

.

b) Hence

C ′ = A′B′ =





1 −3
1 1
0 2





(

3/2 3/2 3/2
−1/2 1/2 3/2

)

=





3 0 −3
1 2 3
−1 1 3



 .



Exercise 6.

x

y

f(1,0)

f(0,1)


