No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2 \end{pmatrix}$$
.

- 1. Determine the rank of $A I_3$ and deduce that 1 is an eigenvalue of A.
- 2. Find an eigenvector X_1 of A associated with the eigenvalue 1.
- 3. Compute the characteristic polynomial of A and deduce all the eigenvalues of A and their multiplicities.
- 4. Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Exercise 2. Let
$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{pmatrix}$$
.

- 1. Determine the rank of $B I_3$ and deduce that 1 is an eigenvalue of B.
- 2. Compute the characteristic polynomial of B and deduce all the eigenvalues of B and their multiplicities.
- 3. Deduce that the matrix B is not diagonalizable.
- 4. We define:

$$U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad V = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \qquad W = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$$

- a) Show that U and W are eigenvectors of B (associated with the eigenvalues you will specify), and show that $(B-I_3)V=U$.
- b) We set

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix}.$$

Show that P is invertible and determine P^{-1} .

- c) Determine the matrix $T = P^{-1}BP$. (Note: it's possible to determine T without explicitly performing the product).
- 5. We set

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let $n \in \mathbb{N}$ with $n \ge 2$.

- a) Determine the value of N^n .
- b) Show that N and D commute and deduce the value of T^n . (The matrix T is the one you obtained in the previous Question).
- c) Determine B^n .

Exercise 3. Let
$$C = \begin{pmatrix} -1 & 4 & -2 \\ -4 & 9 & -4 \\ -8 & 16 & -7 \end{pmatrix}$$
.

- 1. Determine the rank of $C I_3$.
- 2. Deduce that 1 is an eigenvalue of *C*. What can you say about its multiplicity?
- 3. Deduce all the eigenvalues of C and their multiplicities. Is C diagonalizable?

Exercise 4. Let *E* be a vector space over \mathbb{K} and let $f \in L(E)$. For $\lambda \in \mathbb{K}$ we define

$$E_{\lambda} = \operatorname{Ker}(f - \lambda \operatorname{id}_{E}).$$

- 1. Let $\lambda, \lambda' \in \mathbb{K}$ with $\lambda \neq \lambda'$. Show that the subspaces E_{λ} and $E_{\lambda'}$ are independent.
- 2. Let f be the following endomorphism of $E = \mathbb{R}^2$:

$$f: E \longrightarrow E$$

 $(x,y) \longmapsto (x-3y,-3x+y).$

- a) Show that $E_4 \neq \{0_E\}$ and determine a basis of E_4 .
- b) Show that there exists a unique $\lambda \in \mathbb{R} \setminus \{4\}$ such that $E_{\lambda} \neq \{0_E\}$, and determine a basis of E_{λ} .
- c) Are the subspaces E_4 and E_{λ} complementary subspaces of E?
- d) Deduce a basis \mathscr{B} of E such that the matrix $[f]_{\mathscr{B}}$ is diagonal (and explicit this matrix).

Exercise 5. Let

$$u_1 = (1,1),$$
 $u_2 = (1,-1),$ $v_1 = (1,0,0),$ $v_2 = (1,1,0),$ $v_3 = (1,1,1),$

Let

$$\mathcal{B} = \big((1,1),(1,-1)\big) = (u_1,u_2) \qquad \text{and} \qquad \mathcal{C} = \big((1,0,0),(1,1,0),(1,1,1)\big) = (\upsilon_1,\upsilon_2,\upsilon_3).$$

You're given that $\mathscr B$ is a basis of $E=\mathbb R^2$ and that $\mathscr E$ is a basis of $F=\mathbb R^3$.

We moreover define the following two linear maps:

$$f: E \longrightarrow F \qquad g: F \longrightarrow E$$

$$(x,y) \longmapsto (x+y,2x-y,x-y), \qquad (x,y,z) \longmapsto (x+y+z,2x-y-z).$$

- 1. a) Determine the matrix $A = [f]_{std(\mathbb{R}^2), std(\mathbb{R}^3)}$ of f in the standard bases of \mathbb{R}^2 and \mathbb{R}^3 .
 - b) Determine the matrix $B = [g]_{std(R^3), std(R^2)}$ of g in the standard bases of \mathbb{R}^3 and \mathbb{R}^2 .
 - c) Determine the expression of $f \circ g$ using the composition of the maps f and g, and deduce the matrix $C = [f \circ g]_{std}$ of $f \circ g$ in the standard basis of \mathbb{R}^3 .
 - d) Recover the matrix C using the matrices A and B.
- 2. a) Determine the matrix $A' = [f]_{\mathscr{B},\mathscr{C}}$ and the matrix $B' = [g]_{\mathscr{C},\mathscr{B}}$.
 - b) Deduce the matrix $C' = [f \circ g]_{\mathscr{C}}$.

Exercise 6. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the endomorphism of \mathbb{R}^2 such that f(1,0) and f(0,1) are shown in Figure 2. Plot on Figure 2 the image by f of the house shown in Figure 1.

Figure 1 - Original house