

December 21, 2017

Exercise 1.

- By induction: the initial step is true since u₁ = √2. Assume that 0 < u_n < 2 for some n ≥ 1. Then 2 < 2 + u_n < 4, and hence √2 < √2 + u_n < 2, and hence 0 < u_{n+1} < 2.
- 2. We first show that the sequence $(u_n)_{n\geq 1}$ is increasing: let $n\geq 1$. Then

$$u_{n+1} - u_n = \sqrt{2 + u_n} - u_n = \frac{2 + u_n - u_n^2}{\sqrt{2 + u_n} + u_n} = -\frac{(u_n + 1)(u_n - 2)}{\sqrt{2 + u_n} + u_n}.$$

Now since $u_n \in (0,2)$ we have:

$$u_n + 1 > 0,$$
 $u_n - 2 < 0,$ $\sqrt{2 + u_n} + u_n > 0$

hence $u_{n+1} - u_n > 0$ hence the sequence $(u_n)_{n \ge 1}$ is increasing.

Since the sequence $(u_n)_{n\geq 1}$ is increasing and bounded from above, we conclude, by the Monotone Limit Theorem, that $(u_n)_{n\geq 1}$ converges. We denote by ℓ the limit of $(u_n)_{n\geq 1}$. We conclude from Question 1 that $0 \leq \ell \leq 2$. Since for all $n \in \mathbb{N}^*$, $u_{n+1} = \sqrt{2+u_n}$, taking the limit as $n \to +\infty$ (using the elementary operations on limits) yields:

$$\ell = \sqrt{2 + \ell}$$
.

Now,

$$\begin{array}{l} \ell = \sqrt{2 + \ell} \iff \ell^2 = 2 + \ell & \text{since } \ell \geq 0 \\ \iff \ell^2 - \ell - 2 = 0 \\ \iff (\ell + 1)(\ell - 2) = 0 \\ \iff \ell = 2 & \text{since } \ell + 1 \neq 0 \text{ since } \ell \geq 0. \end{array}$$

Hence $\lim_{n\to+\infty} u_n = 2$.

3. For $N \in \mathbb{N}^*$ we define the proposition

$$(P_N) \qquad \forall x \in \mathbb{R}, \ \sin(x) = 2^N \sin\left(\frac{x}{2^N}\right) \prod_{i=1}^N \cos\left(\frac{x}{2^n}\right)$$

We show that for all $N \in \mathbb{N}^{\bullet}$, Proposition P_N is true, by induction on N:

• Base case: let $x \in \mathbb{R}$. Then

$$\sin(x) = \sin\left(2\frac{x}{2}\right) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = 2^{1}\sin\left(\frac{x}{2^{1}}\right)\prod_{n=1}^{\infty}\cos\left(\frac{x}{2^{n}}\right)$$

Hence P_1 is true.

• Inductive step: assume that P_N is true for some $N \ge 1$. Let $x \in \mathbb{R}$. Then:

$$\begin{split} \sin(x) &= 2^N \sin\left(\frac{x}{2^N}\right) \prod_{n=1}^N \cos\left(\frac{x}{2^n}\right) & by \ P_N \\ &= 2^N \sin\left(2\frac{x}{2^{N+1}}\right) \prod_{n=1}^N \cos\left(\frac{x}{2^n}\right) = 2^N 2 \sin\left(\frac{x}{2^{N+1}}\right) \cos\left(\frac{x}{2^{N+1}}\right) \prod_{n=1}^N \cos\left(\frac{x}{2^n}\right) \\ &= 2^{N+1} \sin\left(\frac{x}{2^{N+1}}\right) \prod_{n=1}^{N+1} \cos\left(\frac{x}{2^n}\right) \end{split}$$

Hence P_{N+1} is true.

4. By induction: for n = 1 we have

$$\cos\left(\frac{\pi}{2^{1+1}}\right) = \cos(\pi/4) = \frac{\sqrt{2}}{2} = \frac{u_1}{2},$$

hence the base case is true. Assume that, for some $n \in \mathbb{N}^*$, one has $\cos(\pi/2^{n+1}) = u_n/2$. Then:

$$\cos^{2}\left(\frac{\pi}{2^{n+2}}\right) = \frac{1}{2}\left(1 + \cos\left(\frac{\pi}{2^{n+1}}\right)\right)$$

$$= \frac{1}{2}\left(1 + \frac{u_{n}}{2}\right)$$
by our induction hypothesis
$$= \frac{1}{4}(2 + u_{n}).$$

Now, since $\pi/2^{n+2} \in [-\pi/2, \pi/2]$, we know that $\cos(\pi/2^{n+2}) \ge 0$, hence

$$\cos^2\left(\frac{\pi}{2^{n+2}}\right) = \sqrt{\frac{1}{4}(2+u_n)} = \frac{\sqrt{2+u_n}}{2} = \frac{u_{n+1}}{2}$$

5. Let $N \in \mathbb{N}^*$. From the previous questions we have:

$$1 = \sin\left(\frac{\pi}{2}\right) = 2^{N} \sin\left(\frac{\pi}{2^{N+1}}\right) \prod_{n=1}^{N} \cos\left(\frac{\pi}{2^{n+1}}\right) = 2^{N} \sin\left(\frac{\pi}{2^{N+1}}\right) \prod_{n=1}^{N} \frac{u_{n}}{2} = \frac{\sin\left(\frac{\pi}{2^{N+1}}\right)}{\frac{1}{2^{N}}} \prod_{n=1}^{N} \frac{u_{n}}{2}$$

$$= \frac{\pi}{2} \frac{\sin\left(\frac{\pi}{2^{N+1}}\right)}{\frac{\pi}{2^{N+1}}} \prod_{n=1}^{N} \frac{u_{n}}{2},$$

and we conclude:

$$\forall N \in \mathbb{N}^{\bullet}, \ \frac{2}{\pi} = \frac{\sin\left(\frac{\pi}{2^{N+1}}\right)}{\frac{\pi}{2^{N+1}}} \prod_{n=1}^{N} \frac{u_{\tau}}{2}$$

Now, $\lim_{n \to \infty} \frac{\pi}{2N+1} = 0$, hence

$$\lim_{N \to +\infty} \frac{\sin\left(\frac{\pi}{2^{N+1}}\right)}{\frac{\pi}{2^{N+1}}} = 1$$

hence

$$\frac{2}{\pi} = \lim_{N \to +\infty} \prod_{n=1}^{N} \frac{u_n}{2}$$

Exercise 2.

1. By the product rule,

$$\forall x \in \mathbb{R}, \ f'(x) = (x+1)e^x$$

and we conclude that

$$\forall x \in (1, +\infty), \ f'(x) > 0.$$

Since f is continuous on $[-1, +\infty)$ and for every point $x_0 \in [-1, +\infty) \setminus \{-1\}$, $f'(x_0) > 0$, we conclude that f is increasing on $[-1, +\infty)$.

2. Since the function f is increasing on $[-1, +\infty)$, we must have

$$\forall x \in [-1, +\infty), \ f(x) \ge f(-1) = -1/e.$$

Hence g is well defined, and since g is increasing, g is injective. Moreover, since g is increasing and continuous, by the Intermediate Value Theorem, we must have:

$$g([-1, +\infty)) = \left[g(-1), \lim_{x \to +\infty} g(x)\right]$$

Now it is clear from the elementary operations on limits that $\lim_{x\to+\infty} g(x) = +\infty$, hence the range of g is $[-1/e, +\infty)$, hence g is also surjective.

a) We know that for all x ∈ (-1, +∞), g'(x) = (x + 1)e^x ≠ 0, hence W is differentiable on g((-1, +∞)) = (-1/e, +∞).

Since g'(-1) = 0, we conclude that W is not differentiable at g(-1) = -1/e.

b) We know from the Inverse Function Rule that

$$\forall x \in (-1/e, +\infty), \ W'(xe^x) = \frac{1}{(x+1)e^x}.$$

Hence taking $x = 0 \in (-1/e, +\infty)$ in the previous proposition yields: W'(0) = 1.

Exercise 3.

In the following are given the domain and the range of the functions, as well as the domain of differentiability
and the formula for their derivative:

$$\arcsin: [-1,1] \to [-\pi/2,\pi/2] \qquad \qquad \arcsin': \ (-1,1) \to \mathbb{R} \\ x \longmapsto \frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arctan}: \mathbb{R} \to (-\pi/2,\pi/2) \qquad \qquad \operatorname{arctan}': \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1}{1+x^2}$$

$$\sinh: \mathbb{R} \to \mathbb{R} \qquad \qquad \sinh': \mathbb{R} \to \mathbb{R} \\ x \mapsto \cosh(x)$$

$$\tanh: \mathbb{R} \to (-1,1) \qquad \qquad \tanh': \mathbb{R} \to \mathbb{R} \\ x \mapsto 1 - \tanh^2(x) = \frac{1}{\cosh^2(x)}$$

- tanh is defined on R and its range is (-1,1); arcsin is defined on [-1,1] (which contains the range of tanh), hence arcsin(tanh(x)) is defined for all x ∈ R.
 - sinh is defined on R and arctan too, hence $\arctan(\sinh(x))$ is defined on R.

Conclusion, $D = \mathbb{R}$.

 a) By the chain rule: tanh is differentiable on ℝ and arcsin is differentiable on tanh(ℝ) ⊂ (-1,1), hence f is differentiable on ℝ and for x ∈ ℝ,

f'(x) =
$$\tanh(x) = \frac{1}{\cosh^2(x)} \frac{1}{\sqrt{1 - \tanh^2(x)}} = \frac{1}{\cosh^2(x)} \frac{1}{\sqrt{\frac{1}{\cosh^2(x)}}}$$

$$= \frac{1}{\cosh^2(x)} \frac{1}{\frac{1}{\cosh(x)}}$$

$$= \frac{1}{\cosh(x)}.$$
since $\cosh(x) \ge 1 > 0$

b) By the chain rule: sinh is differentiable on ℝ and arctan is differentiable on sinh(ℝ) ⊂ ℝ, hence g is differentiable on ℝ and for x ∈ ℝ,

$$g'(x) = \sinh'(x) \arctan'(\sinh(x)) = \cosh(x) \frac{1}{1 + \sinh^2(x)} = \cosh(x) \frac{1}{\cosh^2(x)} = \frac{1}{\cosh^2(x)}$$

c) Hence u is differentiable on \mathbb{R} and u' = f' - g' and hence

$$\forall x \in \mathbb{R}, \ u'(x) = \frac{1}{\cosh(x)} - \frac{1}{\cosh(x)} = 0.$$

d) Since \mathbb{R} is an interval, we conclude that u is constant. Since

$$u(0) = f(0) - g(0) = \arcsin(\tanh(0)) - \arctan(\sinh(0)) = \arcsin(0) - \arctan(0) = 0 - 0 = 0$$

we conclude that u is the nil function on \mathbb{R} . Hence f and g are equal. We hence showed that

$$\forall x \in \mathbb{R}, \ \arcsin(\tanh(x)) = \arctan(\sinh(x)).$$

Exercise 4.

Let x ∈ R^{*}₊. Since the function exp is continuous on [0, x] and differentiable on (0, x), by the Mean Value
Theorem, there exists c ∈ (0, x) such that

$$\frac{e^{x}-e^{0}}{x-0}=e^{x},$$

i.e., $e^x = 1 + xe^c$. Now since $c \in (0, x) \subset \mathbb{R}^*$, we have $c^c > 1$, hence $xe^c > x$ and hence $e^x > 1 + x$.

 For x ∈ R^{*}₊ (which is an open set), f(x) = e^{x ln(x)}. Hence, by the chain rule and the product rule, f is differentiable on R^{*}₊ and for x ∈ R^{*}₊.

$$f'(x) = (\ln(x) + 1)e^{x\ln(x)} = (1 + \ln(x))x^{x}.$$

Let $x \in (0,1)$ (which is a punctured right sided neighborhood of 0. Then

$$\frac{f(x) - f(0)}{x - 0} = \frac{e^{x \ln(x)} - 1}{x} = \ln(x) \frac{e^{x \ln(x)} - 1}{x \ln(x)}$$

Now we know that

$$\lim_{x \to 0^+} x \ln(x) = 0 \quad \text{and} \quad \lim_{X \to 0} \frac{e^X - 1}{X} = 1,$$

hence

$$\lim_{x \to 0^+} \frac{e^{x \ln(x)} - 1}{x \ln(x)} = 1.$$

But since $\lim_{x\to 0^+} \ln(x) = -\infty$, we conclude, by the elementary operations on limits, that

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = -\infty \times 1 = -\infty.$$

Hence f is not differentiable at 0.

3) Let $x \in \mathbb{R}^*$ (which is a punctured neighborhood of 0). Then

$$\frac{g(x) - g(0)}{x - 0} = \frac{\sqrt{|x|}\sin(x)\cos(1/x)}{x} = \frac{\sin(x)}{x}\sqrt{|x|}\cos(1/x).$$

Now, the function $x \mapsto \cos(1/x)$ is bounded on \mathbb{R}^* , and we have $\lim x \to 0\sqrt{|x|} = 0$, hence

$$\lim_{x \to 0} \sqrt{|x|} \cos(1/x) = 0.$$

Moreover, we know that $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, hence $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = 1 \times 0 = 0$, hence g is differentiable at 0 and g'(0) = 0.

Exercise 5.

- Since f is differentiable on [a, b], f is continuous on [a, b], hence g is continuous on (a, b]. Now since f is differentiable at a, it is clear from the definition of a derivative that lim _{x \to a^+} g(x) = f'(a) = g(a), hence g is also continuous at a.
- 2. We use the Intermediate Value Theorem:
 - a is continuous on [a, b].
 - q(a) = f'(a) < 0,
 - $g(b) = \frac{f(b) f(a)}{b a} > 0$ since f(b) > f(a) and b > a.

Hence, by the Intermediate Value Theorem, there exists $p \in (a,b)$ such that g(p) = 0. From g(p) = 0 we conclude that f(p) = f(a).

- 3. We know that
 - f is continuous on [a,p] (since $[a,p]\subset [a,b]$ and f is differentiable on [a,b]),
 - f is differentiable on (a,p) (since $(a,p)\subset [a,b]$ and f is differentiable on [a,b]).
 - f(p) = f(a) (by the previous question),

by Rolle's Theorem, there exists $c \in (a, p)$ such that f'(c) = 0.