i AL b) Let z € R%. The function ¢ —» 1/t is continuous on [z, z+ 1] and the function exp is (piecewise) continuous
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» and posntwe on [z, + 1] hence, by the Mean Value Theorem (MVT2), there exists ¢; € [z,z + 1] such
Romaric Pujol, romaric.pujol€insa-lyon.fr that
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Bercise 1 Now since ¢; € [z,z +1],

1. a) Define the function 1 - 1 . £

h: Ry — R GrEcEsSa

€
t — o hence 2 a
Since h is continuous, h possesses an antiderivative, say H. Now, by the Fundamenta! Theorem of Calculus, Z+1)? < —6-2: <1,
vz eRY, f(z)=H(@+1)— H(z). and by the Squeeze Theorem, 5

Since H is differentiable, we conclude (by the chain rule and the usual operations) that f is differentiable z z—+4c0
and, for all z € R}: hence ¢; st 1. We hence conclude that
£ 1 (=]

f(z) = H'(z+ 1) — H'(z) = h{z + 1) — h(z) e
_ o fz t_gdt':_'_‘_ 2(6—1)
m:+1 . T . SFos;
i (efﬂ_g) /xﬂ_dtzime, (8;1 0($))
=Ri-+—1)((efl)a:—i). =

¢) Forz € RS,
b) From the previous form of f', we conclude that

ce(— N[
fa)=¢ (::+1 3:)+f, t’dt'

1 1 1 1 1 1 1 1
o o T LR =) ] T i g =
hence £ is increasing on [1/(e — 1),+o0) and f is decreasing on (0,1/(e — 1)) z

2. a) Let z € R;. The function exp is continuous on [£,2+1) and the function t — 1/t is (piecewise) continuous
and positive on [z, + 1] hence, by the Mean Value Theorem (MVT?2), there exists ¢ € [z, 2 + 1] such that

fa)= eCL d?"' = e(in(z + 1) - In(=)). =) ( (_ i (22)) B ) (e ~1 (:2))

1
VIERlvf’(z)>0‘='z>ei—1&“df'(m)<o*:"’<c—j? Now,

Hence,

((F-2+e(2))-
= =ik
v 2
b) Hence (since the ¢ in the previous statement is between z and z + 1, and exp is increasing), we have
. Exercise 2.
vz e RS, e"(In(z + 1) - In(z)) £ f(z).
1. With the substitution u = /cos(z):
Now, by the elementary operations on limits,
. Q= sin{z) de
. T — o — ==
Jim e (In(z + 1) — In(z)) = 1 x (0~ (—e0)) = +oo, 2./cos(z)
5 Rl - e whenz =0,u=1,
an t i =
we conclude, by the Squeeze Theorem, that xl_l.l’él“_ f(z) = +o0. o when z = /3, u=1/v2.

3. a) Let « € R}. The function exp is continuous and the function ¢ — 1/t is of class C? hence Then:

flz) = ]:H %dt —2[ sin?(z) ( ?.(_f)_) dr
_ [%]:Zﬂfj:ﬂ_e—:zdt ~2[ (1'&5.1&))( sin(z) )d:

e +1 Vv (1)
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=72f (luu")du
z+1 .t 1
:e’( s 7l)+f ¢ a
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7 - 2u- q"“m
5 u=l
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2. a)

Fie f T i) g = [e_""m o
A 0@ ).y W@
b) Let n € N* and consider the tagged subdivision T = ((zo,. .., Tn), (t1, ... ,tn)) of [0,1] where:
k
Vke{0,...,n}, zx = = Vke {1,...,n}, tx = zx.
Then the Riemann sum of (the continuous function on [0, 1]) =+ 2% associated with T}, is:

n n n
1 V2
Rn:§jz‘-(zra:k_,)=§:z'=/m=z ;
k=1 k=1 n k=1 n

Hence, £ =J = 1/In(2).

3. We notice that the given denominator is already fully factored in R and that the degree of the numerator is
less than that of the denominator. Hence the general form of the decomposition is:

A Bz +C
F(z) = :
) z—1 2 +4
« To determine A: multiply by z — 1 and evaluateat z =1: -3 =4

« To determine B we can multiply by = and take the limit £ = +o0: 1 = A+ B hence B = 4.
« To determine C we now can evaluate, e.g., at £ =0: 4 = —A + C/4 hence C = 4.
Conclusion:

3 4z + 4
F(a:)=7-——z_l+x2+4.

Exercise 3.

1. 8= (1,X,X2%x%. dmE =4.

2.« Clearly the nil vector Oz belongs to F, hence F' # 0.

e Let P,Q€ Fandlet A,p€R. Then

(AP+pQ)(0)+3(AP+p@)(1) = AP(0)+pQ(0)+3AP(1)+32Q(1) = A(P(0)+3P(1))+y.(Q((J)+3Q(1)) =0.

Hence AP +pQ € F.
Hence F is & subspace of E.

3. Let P,Q € E and let A € R. Then
F(P+2Q) = (P +2Q)(0) +3(F + 2Q)(1) = P(0) +3P(1) + AMQ(0) +3Q(1)) = f(P) + M(Q).
Hence f is linear.
The relation between f and F is: F = Ker f.

Since f is a non-nil linear form, f is onto, hence rk f = 1. By the Rank-Nullity Theorem, we conclude that
dimKer f =4 — 1 =3 hence dim F = 3.

Exercise 4.

3 X
11 2 100
) 12 1 O
- = = 1 =2
dim F = rk(a, b,c) =rk 12 5|aea-a ™l 4y 3 -3
-1 2 =5) cyecr-2Gn -1 3 -3

Since a and b are two non-collincar vectors, the family (a,b) is an independent family (of vectors of F) Since
dim F = 2, we conclude that the family (a,b) is also a generating family of F', hence (a,b) is a basis of F.
Since the vectors d and e are non-collincar, the family (d, e) is an independent family (of vectors of G). By
definition, the family (d, e} is also a generating family of G, hence (d, €

) is a basis of G. Hence dimG = 2.
2. We know that F + G = Span{a, b,d,e}. Now,

11 0 -1
-4

gmp+e) = | 2 7

-1 2 1 1
1 0 0 O
1 1 -4 3

= k
Gy~ Ca—C ™l-13 3 o0
Cy - Cy 4 C -1.3 3 0
1 0 0 0
1 1.0 O
€3 G + 4C, T -1 3 15 -9 3

C4 = Ca =30, -1 3 16 -9

3. By Grassmann’s Formula,

dim(FNG)=dimF +dimG —dim(F+G)=2+2-3=1.
Hence FNG # {0g}, hence the subspaces F and G are not independent, hence the sum F +G is not a direct
sum.
Exercise 5.
1. Let meR.

a) Let a,b,c€R.

z+my+ z=b T4 my+ z=b
(S) += {ma+ y+ z=a > (L-m*)y+ (1 -m)z=c—mb
RatrRa T+ y+ma=c T Ra-mR (L=-m)y+(m—1)z=c-b
Ry +—~ Ra— Ry
T+ z+ my=b
= (1-m)z+ (1l —m?)y=a—mb
(m-1)z+ (l-m)y=c—b
T+ z+ my=>b
TR (1-m)z+ (1-m*)y=a—mb
Hekla 2-m-miy=ec—(m+1)b+c

Notice that 2 — m — m? = —(m — 1)(m + 2}, so we consider the cases m =1 and m = -2 separately:
o ifm=-2
I+ z—2y=b
(S) = 3z—3y=a+2b
0=a+b+g

and the rank of (S—z) is 2, and {S—_2) possesses solutions if and only if a + b+c=0.

elfm=1
T+z+y=b
(8) = O0=a-b

0=a—-2b+c
The rank of (S1) is 1, and (S)) possesses solutions ifand only ifa=b=c.
o 1im ¢ {—2,1}, the rank of (Sm) is 3, and (Sm) possesses a unique solution.




b) We check for independence of the family %: let z,y,z € R. Then

mz+ y+ z=0
zu+yv+zw =0 <= z+my+ z=0
z+ y+mz=0.
From the previous question, we know that the system possesses a unique solution ifand only if m & {-2,1},

hence @ is independent if and only if m & {—2,1}. Now since dim E = 3 = #%, we conclude that Risa
basis of E if and only if m ¢ {-2,1}.

- 173a71b~1c
z+z+2y=b 741 4 1
(S2) <= —z—3y=a-—2b > ¢ z=—-a— b+ ¢
—4dy=a—-3b+c ‘i a
y=—ga+zbf~c

3. We know that a linear map is uniquely determined by the image of a basis of its domain. Here we know that
(u,v,w) is a basis of E, hence there exists a unique such linear map.

4. We know that a generating family of Im f is given by f(%) = (f(u), f(v), f(w)). Now,

1 1 2 1 00
= =rk|{ 0 1 1 = k] 0 1 1)=2
Im f = rk (&) = 1 B U neees e

Cy +— Ca — 20,
Hence rk f = 2. By the Rank-Nullity Theorem, dimKerf=3-2=1.

& 11 2
flea={0 1 L}.
-1 10
6. From the solutions of the system (S2), we know that
3 1 1
(1,0,0) = i i)
hence
7(1,0,0) = (0,-1/2,-1),
and
1 3 1
(0,1,0) = etV I
hence
£(0,1,0) = (0,1/2,1),
and
1 1 3
(0,0,1) = i ?H— i
hence
£(0,0,1) = (1,1/2,0).
Hence

0 0 1
(flea = | —1/2 1/2 1/2].
-1 1 0

Exercise 6. Let A, u, v € R such that Au + pv + vuw, ie.,
Yz € R, Asin(z) + pcos(z) + ve™ = 0.
If v # 0, then (since sin and cos are bounded),

. i +oo ifr>0
1
=!_trﬂm)\SIn(ar) + pcos(z) + ve* {—oo v <o

but this is impossible since this limit must be nil. Hence v = 0. Now, evaluating at £ = 0 yields g = 0, and
evaluating at 7/2 yields A = 0. Hence we must have A = 1 = v = 0, hence the family (u,v,w) is independent.

Exercise 7.

1. e Since f is a linear map, we must have f(0g) = OF, hence Og € Ker f, hence Ker f # @.
e Let u,v € Ker f and let X, u € K. Then

FOu+ ) = Af(u) +pf(v) =0p

hence M + pv € Ker f.

2. e Assume that f is injective, and let's show that Ker f = {Og}: Let u € Ker f. Then f(u) = Op. But

since f is linear, we know that f(0g) = OF, hence f(u) = f(0g). Since f is injective, we must have
u = 0g. Hence Ker f = {0g}.
« Assume that Ker f = {0z} and let’s show that f is injective: let u,v € E such that f(u) — f(v). Then,

since f is linear, f(u —v) = Op that is, u — v € Ker f. Since Ker f = {0g}, we must have u —v = Og,
hence « = v. Hence f is injective.



