

May 18, 2017

Exercise 1.

1. a) Define the function

$$h: \mathbb{R}^{\bullet}_{+} \longrightarrow \mathbb{F}$$

$$t \longmapsto \frac{e^{t}}{t}$$

Since h is continuous, h possesses an antiderivative, say H. Now, by the Fundamental Theorem of Calculus,

$$\forall x \in \mathbb{R}^{\bullet}_+, \ f(x) = H(x+1) - H(x).$$

Since H is differentiable, we conclude (by the chain rule and the usual operations) that f is differentiable and, for all $x \in \mathbb{R}_+^*$:

$$f'(x) = H'(x+1) - H'(x) = h(x+1) - h(x)$$

$$= \frac{e^{x+1}}{x+1} - \frac{e^x}{x}$$

$$= e^x \left(\frac{e}{x+1} - \frac{1}{x}\right)$$

$$= \frac{e^x}{x(x+1)} ((e-1)x - 1).$$

b) From the previous form of f', we conclude that

$$\forall x \in \mathbb{R}_+^*, \ f'(x) > 0 \iff x > \frac{1}{e-1} \text{ and } f'(x) < 0 \iff x < \frac{1}{e-1},$$

hence f is increasing on $[1/(e-1), +\infty)$ and f is decreasing on (0, 1/(e-1)]

2. a) Let $x \in \mathbb{R}_+^*$. The function exp is continuous on [x,x+1] and the function $t \mapsto 1/t$ is (piecewise) continuous and positive on [x,x+1] hence, by the Mean Value Theorem (MVT2), there exists $c \in [x,x+1]$ such that

$$f(x) = e^c \int_x^{x+1} \frac{\mathrm{d}t}{t} = e^c \left(\ln(x+1) - \ln(x) \right)$$

b) Hence (since the c in the previous statement is between x and x+1, and exp is increasing), we have

$$\forall x \in \mathbb{R}_+^*, \ e^x (\ln(x+1) - \ln(x)) \le f(x)$$

Now, by the elementary operations on limits,

$$\lim_{x\to 0^+} e^x \left(\ln(x+1) - \ln(x)\right) = 1 \times \left(0 - (-\infty)\right) = +\infty,$$

and we conclude, by the Squeeze Theorem, that $\lim_{x\to 0^+} f(x) = +\infty$.

3. a) Let $x \in \mathbb{R}_+^{\bullet}$. The function exp is continuous and the function $t \mapsto 1/t$ is of class C^1 hence

$$f(x) = \int_{x}^{x+1} \frac{e^{t}}{t} dt$$

$$= \left[\frac{e^{t}}{t} \right]_{t=x}^{t=x+1} - \int_{x}^{x+1} \frac{e^{t}}{-t^{2}} dt$$

$$= \frac{e^{x+1}}{x+1} - \frac{e^{x}}{x} + \int_{x}^{x+1} \frac{e^{t}}{t^{2}} dt$$

$$= e^{x} \left(\frac{e}{x+1} - \frac{1}{x} \right) + \int_{x}^{x+1} \frac{e^{t}}{t^{2}} dt.$$

b) Let $x \in \mathbb{R}_+^{\bullet}$. The function $t \mapsto 1/t$ is continuous on [x, x+1] and the function exp is (piecewise) continuous and positive on [x, x+1] hence, by the Mean Value Theorem (MVT2), there exists $c_x \in [x, x+1]$ such that

$$\int_{-\infty}^{x+1} \frac{e^t}{t^2} dt = \frac{1}{c_x^2} \int_{x}^{x+1} e^t dt = \frac{1}{c_x^2} (e^{x+1} - e^x) = \frac{1}{c_x^2} e^x (e-1).$$

Now since $c_x \in [x, x+1]$,

$$\frac{1}{(x+1)^2} \le \frac{1}{c_x^2} \le \frac{1}{x^2},$$

hence

$$\frac{x^2}{(x+1)^2} \le \frac{x^2}{c_x^2} \le 1,$$

and by the Squeeze Theorem,

$$\frac{x^2}{c_x^2} \underset{x \to +\infty}{\longrightarrow} 1,$$

hence $c_x \sim 1$. We hence conclude that

$$\int_{\tau}^{x+1} \frac{e^t}{t^2} dt \underset{x \to +\infty}{\sim} \frac{e^x}{x^2} (e-1).$$

Yes,

$$\int_{x}^{x+1} \frac{e^{t}}{t^{2}} dt \underset{x \to +\infty}{=} e^{x} \left(\frac{e-1}{x^{2}} + o\left(\frac{1}{x^{2}}\right) \right).$$

c) For $x \in \mathbb{R}^{\bullet}_{+}$,

$$f(x) = e^x \left(\frac{e}{x+1} - \frac{1}{x} \right) + \int_x^{x+1} \frac{e^t}{t^2} dt.$$

Now,

$$\frac{1}{x+1} = \frac{1}{x} \times \frac{1}{1+\frac{1}{x}} = \frac{1}{x \to +\infty} \frac{1}{x} \left(1 - \frac{1}{x} + o\left(\frac{1}{x}\right)\right) = \frac{1}{x \to +\infty} \frac{1}{x} - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

Hence,

$$f(x) \underset{x \to +\infty}{=} e^{x} \left(e^{\left(\frac{1}{x} - \frac{1}{x^{2}} + o\left(\frac{1}{x^{2}}\right)\right) - \frac{1}{x}} \right) + e^{x} \left(\frac{e - 1}{x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)$$

$$\underset{x \to +\infty}{=} e^{x} \left(\frac{e - 1}{x} - \frac{1}{x^{2}} + o\left(\frac{1}{x^{2}}\right)\right).$$

Exercise 2.

1. With the substitution $u = \sqrt{\cos(x)}$:

•
$$du = -\frac{\sin(x)}{2\sqrt{\cos(x)}} dx$$
,

- when x = 0, u = 1,
- when $x = \pi/3$, $u = 1/\sqrt{2}$.

Then:

$$I = -2 \int_0^{\pi/3} \sin^2(x) \left(-\frac{\sin(x)}{2\sqrt{\cos(x)}} \right) dx$$

$$= -2 \int_0^{\pi/3} (1 - \cos^2(x)) \left(-\frac{\sin(x)}{2\sqrt{\cos(x)}} \right) dx$$

$$= -2 \int_1^{1/\sqrt{2}} (1 - u^4) du$$

$$= -2 \left[u - \frac{u^5}{5} \right]_{u=1}^{u=1/\sqrt{2}}$$

$$= -2\left(\frac{1}{\sqrt{2}} - \frac{1}{20\sqrt{2}} - 1 + \frac{1}{5}\right)$$
$$= -\frac{19\sqrt{2}}{20} + \frac{8}{5}$$

2. a)

$$J = \int_0^1 e^{x \ln(2)} dx = \left[\frac{e^{x \ln(2)}}{\ln(2)} \right]_{x=0}^{x=1} = \frac{1}{\ln(2)}.$$

b) Let $n \in \mathbb{N}^*$ and consider the tagged subdivision $T_n = ((x_0, \dots, x_n), (t_1, \dots, t_n))$ of [0, 1] where:

$$\forall k \in \{0, \ldots, n\}, \ x_k = \frac{k}{n}, \ \forall k \in \{1, \ldots, n\}, \ t_k = x_k.$$

Then the Riemann sum of (the continuous function on [0,1]) $x\mapsto 2^x$ associated with T_n is:

$$R_n = \sum_{k=1}^n 2^{t_k} (x_k - x_{k-1}) = \sum_{k=1}^n 2^{k/n} \frac{1}{n} = \sum_{k=1}^n \frac{\sqrt[n]{2^k}}{n}.$$

Hence, $\ell = J = 1/\ln(2)$

 We notice that the given denominator is already fully factored in R and that the degree of the numerator is less than that of the denominator. Hence the general form of the decomposition is:

$$F(x) = \frac{A}{x-1} + \frac{Bx + C}{x^2 + 4}.$$

- To determine A: multiply by x-1 and evaluate at x=1: -3=A.
- To determine B we can multiply by x and take the limit $x \to +\infty$: 1 = A + B hence B = 4.
- To determine C we now can evaluate, e.g., at x = 0: 4 = -A + C/4 hence C = 4.

Conclusion:

$$F(x) = -\frac{3}{x-1} + \frac{4x+4}{x^2+4}.$$

Exercise 3.

- 1. $\mathcal{B} = (1, X, X^2, X^3)$. dim E = 4.
- Clearly the nil vector 0_E belongs to F, hence F ≠ ∅.
 - Let $P, Q \in F$ and let $\lambda, \mu \in \mathbb{R}$. Then

$$(\lambda P + \mu Q)(0) + 3(\lambda P + \mu Q)(1) = \lambda P(0) + \mu Q(0) + 3\lambda P(1) + 3\mu Q(1) = \lambda (P(0) + 3P(1)) + \mu (Q(0) + 3Q(1)) = 0.$$

Hence $\lambda P + \mu Q \in F$.

Hence F is a subspace of E.

3. Let $P, Q \in E$ and let $\lambda \in \mathbb{R}$. Then

$$f(P + \lambda Q) = (P + \lambda Q)(0) + 3(P + \lambda Q)(1) = P(0) + 3P(1) + \lambda (Q(0) + 3Q(1)) = f(P) + \lambda f(Q)$$

Hence f is linear.

The relation between f and F is: $F = \operatorname{Ker} f$

Since f is a non-nil linear form, f is onto, hence $\operatorname{rk} f = 1$. By the Rank-Nullity Theorem, we conclude that $\dim \operatorname{Ker} f = 4 - 1 = 3$ hence $\dim F = 3$.

Exercise 4.

1.

$$\dim F = \operatorname{rk}(a,b,c) = \operatorname{rk}\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ -1 & 2 & -5 \\ -1 & 2 & -5 \end{pmatrix} \underset{C_3 \leftarrow C_3 - 2C_1}{=} \operatorname{rk}\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ -1 & 3 & -3 \\ -1 & 3 & -3 \end{pmatrix} = 2.$$

Since a and b are two non-collinear vectors, the family (a,b) is an independent family (of vectors of F). Since $\dim F = 2$, we conclude that the family (a,b) is also a generating family of F, hence (a,b) is a basis of F. Since the vectors d and e are non-collinear, the family (d,e) is an independent family (of vectors of G). By definition, the family (d,e) is also a generating family of G, hence (d,e) is a basis of G. Hence $\dim G = 2$.

2. We know that $F + G = \text{Span}\{a, b, d, e\}$. Now,

$$\dim(F+G) = \operatorname{rk} \begin{pmatrix} 1 & 1 & 0 & -1 \\ 1 & 2 & -4 & 2 \\ -1 & 2 & 3 & 1 \\ -1 & 2 & 1 & 1 \end{pmatrix}$$

$$\stackrel{=}{\underset{C_2 \leftarrow C_3 - C_1}{=}} \operatorname{rk} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & -4 & 3 \\ -1 & 3 & 3 & 0 \\ -1 & 3 & 3 & 0 \end{pmatrix}$$

$$\stackrel{=}{\underset{C_4 \leftarrow C_4 + C_1}{=}} \operatorname{rk} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 3 & 15 & -9 \\ -1 & 3 & 15 & -9 \\ -1 & 3 & 15 & -9 \end{pmatrix} = 3.$$

3. By Grassmann's Formula,

$$\dim(F \cap G) = \dim F + \dim G - \dim(F + G) = 2 + 2 - 3 = 1.$$

Hence $F \cap G \neq \{0_E\}$, hence the subspaces F and G are not independent, hence the sum F + G is not a direct sum

Exercise 5.

- 1. Let $m \in \mathbb{R}$.
 - a) Let $a, b, c \in \mathbb{R}$.

$$(S) \underset{R_1 \leftrightarrow R_2}{\Longleftrightarrow} \left\{ \begin{array}{l} x + my + \quad z = b \\ mx + \quad y + \quad z = a \\ x + \quad y + mz = c \\ x + \quad y + mz = c \\ \end{array} \right. \underset{R_3 \leftarrow R_3 - R_1}{\Longleftrightarrow} \left\{ \begin{array}{l} x + \quad my + \quad z = b \\ (1 - m^2)y + (1 - m)z = a - mb \\ (1 - m)y + (m - 1)z = c - b \end{array} \right.$$

$$\iff \left\{ \begin{array}{l} x + \quad x + \quad my = b \\ (1 - m)z + (1 - m^2)y = a - mb \\ (m - 1)z + (1 - m)y = c - b \end{array} \right.$$

$$\iff \left\{ \begin{array}{l} x + \quad x + \quad my = b \\ (m - 1)z + (1 - m)z + (1 - m^2)y = a - mb \\ (2 - m - m^2)y = a - (m + 1)b + c \end{array} \right.$$

Notice that $2-m-m^2=-(m-1)(m+2)$, so we consider the cases m=1 and m=-2 separately:

• if m = -2:

$$(S) \iff \begin{cases} x + z - 2y = b \\ 3z - 3y = a + 2b \\ 0 = a + b + c, \end{cases}$$

and the rank of (S_{-2}) is 2, and (S_{-2}) possesses solutions if and only if a+b+c=0.

• If m = 1:

$$(S) \iff \begin{cases} x+z+y=b \\ 0=a-b \\ 0=a-2b+c. \end{cases}$$

The rank of (S_1) is 1, and (S_1) possesses solutions if and only if a = b = c.

• If $m \notin \{-2,1\}$, the rank of (S_m) is 3, and (S_m) possesses a unique solution.

b) We check for independence of the family \mathcal{B} : let $x, y, z \in \mathbb{R}$. Then

$$xu + yv + zw = 0_E \iff \begin{cases} mx + y + z = 0\\ x + my + z = 0\\ x + y + mz = 0. \end{cases}$$

From the previous question, we know that the system possesses a unique solution if and only if $m \notin \{-2,1\}$, hence \mathscr{B} is independent if and only if $m \notin \{-2,1\}$. Now since dim $E=3=\#\mathscr{B}$, we conclude that \mathscr{B} is a basis of E if and only if $m \notin \{-2,1\}$.

2.

$$(S_2) \iff \begin{cases} x + z + 2y = b \\ -z - 3y = a - 2b \\ -4y = a - 3b + c \end{cases} \iff \begin{cases} x = \frac{3}{4}a - \frac{1}{4}b - \frac{1}{4}c \\ z = -\frac{1}{4}a - \frac{1}{4}b + \frac{3}{4}c \\ y = -\frac{1}{4}a + \frac{3}{4}b - \frac{1}{4}c \end{cases}$$

- 3. We know that a linear map is uniquely determined by the image of a basis of its domain. Here we know that (u, v, w) is a basis of E, hence there exists a unique such linear map.
- 4. We know that a generating family of $\operatorname{Im} f$ is given by $f(\mathscr{B}) = \big(f(u), f(v), f(w)\big)$. Now,

$$\operatorname{Im} f = \operatorname{rk} f(\mathcal{B}) = \operatorname{rk} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix} = \underbrace{\begin{array}{c} = \\ C_2 \leftarrow C_3 - C_1 \\ C_3 \leftarrow C_3 - 2C_1 \end{array}} \operatorname{rk} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 2 & 2 \end{pmatrix} = 2.$$

Hence $\operatorname{rk} f = 2$. By the Rank–Nullity Theorem, $\dim \operatorname{Ker} f = 3 - 2 = 1$.

5

$$[f]_{\mathscr{B},\mathsf{std}} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

6. From the solutions of the system (S_2) , we know that

$$(1,0,0)=\frac{3}{4}u-\frac{1}{4}v-\frac{1}{4}w,$$

hence

$$f(1,0,0) = (0,-1/2,-1),$$

and

$$(0,1,0)=-\frac{1}{4}u+\frac{3}{4}v-\frac{1}{4}w,$$

hence

$$f(0,1,0)=(0,1/2,1),$$

and

$$(0,0,1)=-\frac{1}{4}u-\frac{1}{4}v+\frac{3}{4}w,$$

hence

$$f(0,0,1)=(1,1/2,0).$$

Hence

$$[f]_{\text{std}} = \begin{pmatrix} 0 & 0 & 1 \\ -1/2 & 1/2 & 1/2 \\ -1 & 1 & 0 \end{pmatrix}.$$

Exercise 6. Let $\lambda, \mu, \nu \in \mathbb{R}$ such that $\lambda u + \mu v + \nu w$, i.e.,

$$\forall x \in \mathbb{R}, \ \lambda \sin(x) + \mu \cos(x) + \nu e^x = 0.$$

If $\nu \neq 0$, then (since sin and cos are bounded),

$$\lim_{x \to +\infty} \lambda \sin(x) + \mu \cos(x) + \nu e^{x} \begin{cases} +\infty & \text{if } \nu > 0 \\ -\infty & \text{if } \nu < 0 \end{cases}$$

but this is impossible since this limit must be nil. Hence $\nu=0$. Now, evaluating at x=0 yields $\mu=0$, and evaluating at $\pi/2$ yields $\lambda=0$. Hence we must have $\lambda=\mu=\nu=0$, hence the family (u,v,w) is independent.

Exercise 7.

- 1. Since f is a linear map, we must have $f(0_E) = 0_F$, hence $0_E \in \text{Ker } f$, hence $\text{Ker } f \neq \emptyset$.
 - Let $u, v \in \text{Ker } f$ and let $\lambda, \mu \in \mathbb{K}$. Then

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) = 0_F$$

hence $\lambda u + \mu v \in \text{Ker } f$.

- Assume that f is injective, and let's show that Ker f = {0_E}: Let u ∈ Ker f. Then f(u) = 0_F. But since f is linear, we know that f(0_E) = 0_F, hence f(u) = f(0_E). Since f is injective, we must have u = 0_E. Hence Ker f = {0_E}.
 - Assume that $\operatorname{Ker} f = \{0_E\}$ and let's show that f is injective: let $u,v \in E$ such that f(u) f(v). Then, since f is linear, $f(u-v) = 0_F$ that is, $u-v \in \operatorname{Ker} f$. Since $\operatorname{Ker} f = \{0_E\}$, we must have $u-v = 0_E$, hence u=v. Hence f is injective.