Name: MAGNIER ZOE

**Exercise 1.** Give an example of a function  $f:[0,1] \to \mathbb{R}$  that is injective and **not** monotone. Give the explicit formula for f and plot its graph.



**Exercise 2.** Let A be a non-empty subset of  $\mathbb{R}$  symmetric with respect to 0, and let  $f:A\to\mathbb{R}$ . Recall the definition of "f is odd."

$$\forall x \in A, f(-x) = -f(x)$$

Exercise 3. Linearize the following trigonometric expression:

$$\forall x \in \mathbb{R}, \sin^4(x) = \left[\sin^2(x)\right]^2 = \left[\sin(2x) - \Lambda\right] = \frac{\sin^2(2x) - 2\sin(2x)}{2} = \frac{\sin(4x) - \Lambda}{2} = \frac{\sin(4x) - \Lambda}{2} = \frac{\sin(4x) - \Lambda}{2}$$
Exercise 4. Let

Show that f is a bijection and determine  $f^{-1}$ . You may use the back of this sheet if your answer doesn't fit in the box below.

Let 
$$\alpha \in \mathbb{R}$$
,  $y \in \mathbb{R}$ .

$$f(\alpha) = y(\alpha) + 2 = y$$

$$(\alpha) = y(\alpha) + 2 = y$$

$$(\alpha) = x = \frac{y^{-2}}{3}$$
Since  $f(\alpha) = y \Rightarrow \alpha = \frac{y^{-2}}{3}$  then fisinjective. Clearly,  $\frac{y^{-2}}{3} \in \mathbb{R}$  so f is two jective. Therefore  $f(\alpha) = y(\alpha)$  and  $f(\alpha) = y(\alpha)$  is  $y(\alpha) = y(\alpha)$ .

$$y(\alpha) = y(\alpha) + y(\alpha)$$

$$y(\alpha) = y$$

Exercise 5. Let  $x, y \in \mathbb{R}$ . Recall the product formula

$$\cos(x)\cos(y) = \frac{\Lambda}{2} \left[ \cos(\alpha + b) + \cos(\alpha - b) \right]$$