Name: MAGNIERZó

Exercise 1.

1. Let $x_{0} \in \mathbb{R}$ and let f be a function defined on a punctured neighborhood of x_{0}. Recall the definition of

$$
\lim _{x \rightarrow x_{0}} f(x)=-2
$$

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in\left(x_{0}-\delta x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right),|q(x)|<|<\varepsilon|
$$

2. Let f be a function defined in a neighborhood of $-\infty$. Recall the definition of

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty
$$

$$
\forall \varepsilon>0, \exists M \in \mathbb{R}, \forall x \in(-\infty, n), f(x)>\varepsilon .
$$

Exercise 2.

1. Give the general solution of the following differential equation:

$$
-3 f^{\prime}+2 f=0
$$

No justifications required.
\qquad
The general solution is $\quad f: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto A e^{\frac{2}{3} x}, A \in \mathbb{R} .
$$

2. Give the solution of the following initial value problem:

$$
\left\{\begin{array}{l}
-3 f^{\prime}+2 f=0 \\
f(2)=3
\end{array}\right.
$$

No justifications required.

$$
\begin{aligned}
& f(2)=3 \Leftrightarrow A e^{\frac{2}{3} \times 2}=3^{\Leftrightarrow} \Leftrightarrow A \times e^{\frac{4}{3}}=3^{(-)} \quad A=\frac{3}{e^{\frac{4}{3}}}=3 e^{-\frac{4}{3} \cdot} \\
& \text { Hence } \forall x \in \mathbb{R}, \quad f(x)=3 e^{-\frac{4}{3}} e^{\frac{2}{3} x}=3 e^{\frac{2}{3} x-\frac{4}{3}}
\end{aligned}
$$

