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Exercise 1 (Differential Equations).

1. Let y0, v0 ∈ R.

a) We first find the general solution of the following differential equation

(∗) y′′ − y′ − 2y = 0.

Its characteristic equation is
r2 − r − 2 = 0.

Its discriminant is ∆ = 1 + 8 = 9 > 0, and we have two real roots r1 = −1 and r2 = 2, so the general
solution of (∗) is

y(x) = Ae2x +Be−x,

where A,B ∈ R are constants we’re now going to determine using the initial conditions: The first initial
condition yields

y(0) = A+B = y0.

For the second initial condition, we need to differentiate y:

y′(x) = 2Ae2x −Be−x

and we obtain
y′(0) = 2A−B = v0.

We hence need to solve
{

A+B= y0
2A−B= v0.

If we add the two rows we obtain 3A = y0 + v0 hence A = (y0 + v0)/3 and we then obtain B = y0 −A =
(2y0 − v0)/3. Hence the solution of (IVP) is

y(x) =
y0 + v0

3
e2x +

2y0 − v0
3

e−x.

b) • If y0 = −v0, then our solution is:
y(x) = y0e

−x −→
x→+∞

0,

• If y0 6= −v0, then

y(x) =
y0 + v0

3
e2x +

2y0 − v0
3

e−x

= e2x
(

y0 + v0
2

+
2y0 − v0

3
e−3x

)

.

Now,

lim
x→+∞

y0 + v0
2

+
2y0 − v0

3
e−3x =

y0 + v0
3

6= 0

hence, since lim
x→+∞

e3x = +∞, we conclude, by the elementary operations on limits, that

lim
x→+∞

y(x) =

{

+∞ if y0 + v0 > 0

−∞ if y0 + v0 < 0

6= 0.

2. • We need the general solution of the associated homogeneous equation, i.e., of the following differential
equation:

y′ − 3y = 0,

which has the following general solution:

y(x) = Ae3x, A ∈ R.



• We need a particular solution of (∗). To do that, we first consider the complex equation

y′(x)− 3y(x) = 2e3ix.

We now search for a particular solution of this complex equation of the form yC(x) = Ce3ix. Since

y′C(x) = 3iCe3ix,

we conclude that:

yC is a solution of the complex equation ⇐⇒ ∀x ∈ R, 3iCe3ix − 3Ce3ix = 2e3ix

⇐⇒ (−3 + 3i)C = 2

⇐⇒ C =
2

−3 + 3i
.

Now we know that a particular solution of (∗) is given by

yp(x) = Re
(

Ce3ix
)

= Re

(

2
cos(3x) + i sin(3x)

−3 + 3i

)

= 2
−3 cos(3x) + 3 sin(3x)

18
= −1

3
cos(3x) +

1

3
sin(3x).

Finally, we conclude that the general solution of (∗) is:

y(x) = Ae3x − 1

3
cos(3x)− 1

3
sin(3x).

3. From the part
e−3x

(

A cos(2x) +B sin(2x)
)

,

we conclude that the roots of the characteristic equation of the associated homogeneous equation must be
−3 + 2i and −3− 2i. Now a polynomial (in r) of degree 2 with these roots is:

(r + 3− 2i)(r + 3 + 2i) = r2 + 6r + 13.

Hence the associated homogeneous equation must be

y′′ + 6y′ + 13y = 0.

Because a particular solution of the differential equation we’re looking for is 1, the differential equation must
be:

y′′ + 6y′ + 13y = 13.

Exercise 2.

1.
∀x, y ∈ R, sinh(x+ y) = sinh(x) cosh(y) + cosh(y) sinh(x).

2. If we had an α ∈ R such that sinh(α) = 4 and cosh(α) = 5 we would have, by the Pythagorean Theorem,
cosh2(α)− sinh2(α) = 1 i.e., 52 − 42 = 1, i.e., 25− 16 = 1, i.e., 9 = 1, which is impossible.

3. Let x ∈ R. If we divide Equation (∗) by a number µ ∈ R
∗

+, we obtain:

(∗) ⇐⇒ 4

µ
cosh(x) +

5

µ
sinh(x) =

6

µ

We need to find µ so that the system
{

sinh(α) = 4/µ

cosh(α) = 5/µ,

and the Pythagorean Theorem forces:

1 = cosh2(α)− sinh2(α) =
25

µ2
− 16

µ2
=

9

µ2
,

and hence (since we want µ > 0), µ = 3. In this case, we can take α = arcsinh(4/3).



4. Finally, for x ∈ R,

x is a solution of (∗) ⇐⇒ sinh(α+ x) = 2

⇐⇒ α+ x = arcsinh(2)

⇐⇒ x = arcsinh(2)− α = arcsinh(2)− arcsinh(4/3)

⇐⇒ x = ln
(

2 +
√
5
)

− ln(3) = ln

(

2 +
√
5

3

)

.

Exercise 3.

1. We notice that −1 and 2 are common roots of the denominators, and their factored form is:

x3 − 3x− 2 = (x− 2)(x+ 1)2 and x2 − x− 2 = (x− 2)(x+ 1).

Hence, for x ∈ (−1, 2) ∪ (2,+∞) (which is a punctured neighborhood of 2),

3

x3 − 3x− 2
− 1

x2 − x− 2
=

3

(x− 2)(x+ 1)2
− 1

(x− 2)(x+ 1)

=
3− x− 1

(x− 2)(x+ 1)2

=
2− x

(x− 2)(x+ 1)2

= − 1

(x+ 1)2

−→
x→2

−1

9
.

2. First observe that, for x ∈ R
∗

+ (which is a neighborhood of +∞) one has:

x
√
2 + x2

1 + x3
=

x2
√

1 + 2/x2

x3
(

1 + 1/x3
) =

1

x

√

1 + 2/x2

(

1 + 1/x3
) −→

x→+∞

0× 1

1
= 0.

Now, if f : R → [1,+∞), we have:

∀x ∈ R, 0 <
1

f(x)
≤ 1.

In particular, 1/f is bounded. Now we recognized that the expression

x
√
2 + x2

(

1 + x3
)

f(x)
=

x
√
2 + x2

(

1 + x3
)

1

f(x)

is the product of a term that goes to 0 by a bounded term. Hence, by the Squeeze Theorem,

lim
x→+∞

x
√
2 + x2

(

1 + x3
)

f(x)
= 0.

3. a) Since
lim
x→0

1 + x2 = lim
x→0

1 + 2x2 = 1

we conclude, by the Squeeze Theorem, that

lim
x→0

f(x) = 1.

Hence a = 1.

b) Since
lim

x→+∞

1 + x2 = +∞

we obtain, by the Squeeze Theorem (rather, the “Push Theorem”) that lim
x→+∞

f(x) = +∞. Hence b = +∞.



c) Since sin is bounded and limx→+∞ f(x) = +∞ we conclude, by (a corollary of) the Squeeze Theorem,
that lim

x→+∞

sin(x) + f(x) = +∞. Hence c = +∞.

d) For x ∈ R
∗

+ (which is a punctured neighborhood of +∞) we have:

1

x3
+

1

x
≤ f(x)

x3
≤ 1

x3
+

2

x
.

Since

lim
x→+∞

1

x3
+

1

x
= lim

x→+∞

1

x3
+

2

x
= 0

we conclude, by the Squeeze Theorem, that lim
x→+∞

f(x) = 0. Hence d = 0.

Exercise 4.

1. Let x, y ∈ R with x < y ≤ −2. Since y ≤ −2, by multiplying this inequality by x (with x < 0), we obtain
xy ≥ −2x. Now adding x + y yields x + y + xy ≥ −x + y. Since x < y, we have −x + y > 0 and hence
x+ y + xy > 0.

2. Let x ∈ R \ −1. Now, from the following equivalence:

−x− 2 = −1 ⇐⇒ −x = 1 ⇐⇒ x = −1

we conclude (since x 6= −1) that −x − 2 6= −1, hence −x − 2 is in the domain of f , hence f(−x − 2) is
well-defined.

Now,

f(x) + 4 =
2x2 + 4x+ 4

1 + x

and

f(−x− 2) + 4 = −2x2 + 4x+ 4

1 + x
.

Hence f(−x− 2) + 4 = −
(

f(x) + 4
)

.

3. Let x, y ∈ (−∞, 2] such that x < y. Then

f(x)− f(y) =
2(x− y)(x+ y + xy)

(1 + x)(1 + y)
.

Since x−y < 0, x+y+xy > 0 (by Question 1) and 1+x < 0 and 1+y < 0, we conclude that f(x)−f(y) < 0,
hence f(x) < f(y). Hence f is increasing on (−∞, 2].

4. For x ∈ (−∞,−1) (which is a neighborhood of +∞),

2x2

1 + x
= x

2

1 + 1/x
−→

x→−∞

−∞× 2

1 + 0
= −∞.

Hence ℓ = −∞.

5. J = (−∞,−8]. The −8 endpoint comes from the value of f(2).

6. Since f is increasing on (−∞,−2], g is injective. Moreover, g(I) = f(I) = J = codomain of g, so g is
surjective. Hence g is a bijection.

7. inf(g) = inf J = −∞, sup(g) = sup J = −8. min(g) doesn’t exist since min(J) doesn’t exist, and max(g) =
max(J) = −8.

8. Let x ∈ (−∞,−2] and y ∈ (−∞,−8]. Then:

g(x) = y ⇐⇒ 2x2

1 + x
= y ⇐⇒ 2x2 − xy − y = 0.

We recognize a quadratic (in the variable x), the determinant of which is ∆ = y2 + 8y = y(y + 8). Since
y ≤ −8 < 0, ∆ ≥ 0, and the solutions of the quadratic are

y +
√

y(y + 8)

4
and

y −
√

y(y + 8)

4
.



Among these solutions, only the second one, i.e.,

y −
√

y(y + 8)

4
.

belongs to (−∞,−2]. Indeed,1

•
y +

√

y(y + 8)

4
+ 2 =

y + 8 +
√−y

√

−(y + 8)

4

=
−
√

−(y + 8)
2

+
√−y

√

−(y + 8)

4

=
−
√

−(y + 8) +
√−y

4

√

−(y + 8)

≥ 0,

since −y − 8 ≤ −y and hence
√

−(y + 8) ≤ √−y, so that

y +
√

y(y + 8)

4
≥ −2.

Moreover, the equality occurs if and only if y = −8 (in which case both solutions are equal to −2).

•
y −

√

y(y + 8)

4
+ 2 =

y + 8−√−y
√

−(y + 8)

4

=
−
√

−(y + 8)
2 −√−y

√

−(y + 8)

4

= −
√

−(y + 8) +
√−y

4

√

−(y + 8)

≤ 0,

so that
y −

√

y(y + 8)

4
≤ −2.

We hence conclude that:
g−1 : (−∞,−8] −→ (−∞,−2]

y 7−→ y −
√

y(y + 8)

4
.

9. Let y ∈ (−∞,−8] (which is a neighborhood of −∞). Then,

y −
√

y(y + 8)

4
=

y −
√

y2(1 + 8/y)

4

=
y −

√

y2
√

1 + 8/y

4

=
y − |y|

√

1 + 8/y

4

=
y + y

√

1 + 8/y

4

= y
1 +

√

1 + 8/y

4

−→
y→−∞

= −∞× 1

4
= −∞.

The other limit is straightforward:

lim
y→−8

y −
√

y(y + 8)

4
=

−8

4
= −2.

1 notice that y < 0 and y + 8 ≤ 0, so that
√

y(y + 8) =
√
−y

√
−y − 8 =

√
−y

√

−(y + 8).


