INSTITUT NATIONAL
DES SCIENCES

el SCAN 1 — S1 — Solution of Math Test #2 December 7. 2018

LYON

INSA

Exercise 1 (Differential Equations).

Romaric Pujol, romaric.pujol@insa-lyon.fr

1. Let yo,v9 € R.

a) We first find the general solution of the following differential equation
(%) y' -y —2y=0.

Its characteristic equation is
r?—r—2=0.

Tts discriminant is A = 1+ 8 = 9 > 0, and we have two real roots r; = —1 and o = 2, so the general

solution of (%) is
y(x) = Ae** + Be™®,

where A, B € R are constants we’re now going to determine using the initial conditions: The first initial

condition yields
y(0) = A+ B = yo.

For the second initial condition, we need to differentiate y:
Y (z) = 24e** — Be™®

and we obtain
y'(O) =2A—-—B= V.

‘We hence need to solve
2A—B= V9.

If we add the two rows we obtain 3A = yo + vg hence A = (yo + vg)/3 and we then obtain B =yy — A =
(2yo — v9)/3. Hence the solution of (IVP) is

{ A+B:y0

2 —
(z) = yo—gvoe%—k y03 er,x.

b) e If yg = —wvp, then our solution is:
y(z) =yoe " — 0,
r——400

o If Yo 7& —0, then

2 —
y(x) = Yo +erg$ n Yo — Vo o7

3 3
_ o2x (Yot i 2yo — Vo s )
2 3
Now,
. Yo+tvo | 2Yo—vo _3, Yo+ Vo
wgrfoo 2 + 3 ¢ -3 70
hence, since lirf e3* = 400, we conclude, by the elementary operations on limits, that
Tr—r+00
. —+00 lf Yo + Vo > 0
lim y(z) = .
Z—+00 —o0 ifyg+wvy <0
# 0.
2. e We need the general solution of the associated homogeneous equation, i.e., of the following differential
equation:
y' —3y=0,

which has the following general solution:

y(r) = Ae®*, A€ R.



e We need a particular solution of (). To do that, we first consider the complex equation
y'(x) — 3y(x) = 2.
We now search for a particular solution of this complex equation of the form yc(z) = Ce®™. Since
ye(z) = 3iCe®™,
we conclude that:

yc is a solution of the complex equation <= Vz € R, 3iCe®™® — 3Ce%® = 2¢%@
= (-3+3)C=2

2
— (C= .
-3+ 30
Now we know that a particular solution of (x) is given by
. 3(3 p sin(3 —3cos(3 3sin(3 1 1
yp(x) = Re(Cegm) = Re (2005( ai)g—:z;n( a:)) =2 cos{ x)lg— sin(32) =3 cos(3zx) + 3 sin(3z).

Finally, we conclude that the general solution of (x) is:
3z 1 1 .
y(x) = Ae™® — 3 cos(3x) — 3 sin(3x).
3. From the part

e %" (Acos(2z) + Bsin(2z)),

we conclude that the roots of the characteristic equation of the associated homogeneous equation must be
—3+ 2i and —3 — 2i. Now a polynomial (in r) of degree 2 with these roots is:

(r+3—2i)(r +3+2i) = r? + 6r + 13.
Hence the associated homogeneous equation must be
y"' + 6y + 13y = 0.

Because a particular solution of the differential equation we’re looking for is 1, the differential equation must
be:
y" + 6y’ + 13y = 13.

Exercise 2.

1.
Vz,y € R, sinh(x + y) = sinh(z) cosh(y) + cosh(y) sinh(x).

2. If we had an o € R such that sinh(o) = 4 and cosh(a) = 5 we would have, by the Pythagorean Theorem,
cosh2(a) — sinhz(a) =1lie,52—42=1,ie.,25—-16=1,1ie., 9 =1, which is impossible.
3. Let z € R. If we divide Equation (*) by a number p € R?, we obtain:

4 5 6
*%) <= —cosh(z) + — sinh(z) = —
(*) . (z) p (2) m

We need to find p so that the system

sinh(o) =4/
cosh(a) =5/,

and the Pythagorean Theorem forces:

25 169

1 = cosh?(a) — sinh*(a) Z 2 =—,

I

and hence (since we want p > 0), 1 = 3. In this case, we can take o = arcsinh(4/3).



4. Finally, for z € R,

x is a solution of (x) <= sinh(a+z) =2
<= «a+ x = arcsinh(2)
x = arcsinh(2) — a = arcsinh(2) — arcsinh(4/3)

— = ln(2 + \/5) —In(3) =1In <2+3\/5> .

!

Exercise 3.
1. We notice that —1 and 2 are common roots of the denominators, and their factored form is:
23 —3r—2=(x—2)(x+1) and 22— —-2=(z—2)(z+1).
Hence, for z € (—1,2) U (2, +00) (which is a punctured neighborhood of 2),

3 I 3 1
3 —3c-2 22—2-2 (z—-2)(z+1)?2 (z—2)(z+1)
33—z -1
RRCEDIFESIE
_ 2—x
C(x—2)(z+1)2
_ 1
CRRYE
1

— .
z—2 9

2. First observe that, for z € R* (which is a neighborhood of +0c0) one has:

eV2+22 2P\ 14+2/22 1 \/1+2/a? 1

T+23  23(1+1/28) o (1+1/a8) i VX0

1
T

Now, if f: R — [1,400), we have:

1
VeeR, 0 < — < 1.
f(@)

In particular, 1/f is bounded. Now we recognized that the expression

V2 + 22 zvV2+22 1

(1+a23)f(x) (1+2%) flz)

is the product of a term that goes to 0 by a bounded term. Hence, by the Squeeze Theorem,

i _EVZEe?
st (14+2%) f(a)

3. a) Since
lim142?=lim1+22% =1
z—0 x—0

we conclude, by the Squeeze Theorem, that

lim f(z) =1.

z—0

Hence a = 1.
b) Since

lim 1+2%?=+c
r—r+00

we obtain, by the Squeeze Theorem (rather, the “Push Theorem”) that lim f(z) = +oc0. Hence b = +o0.

Tr—+00



¢) Since sin is bounded and lim,_, . f(x) = 400 we conclude, by (a corollary of) the Squeeze Theorem,
that liIE sin(z) + f(z) = +o0. Hence ¢ = +oc0.
Tr—r+00

d) For x € R* (which is a punctured neighborhood of +00) we have:

11 fx) 1 2
R A
Since
lim i—klz lim i—|—g=O

we conclude, by the Squeeze Theorem, that ll)rf f(x) =0. Hence d = 0.

Exercise 4.

1.

Let z,y € R with < y < —2. Since y < —2, by multiplying this inequality by x (with z < 0), we obtain
zy > —2x. Now adding x + y yields x +y + xy > —x + y. Since z < y, we have —x 4+ y > 0 and hence
z+y+axy > 0.

. Let z € R\ —1. Now, from the following equivalence:

—r—2=-1 <« =1 < z=-1

we conclude (since x # —1) that —x — 2 # —1, hence —x — 2 is in the domain of f, hence f(—x — 2) is
well-defined.

Now,
202 +4dx +4
4:
fl)+ 1+
and 2, A
20° 4+ 4x +
e — )4+ 4= —
floz )+ 14+

Hence f(—z —2) +4=—(f(z) +4).

. Let @,y € (—00,2] such that z < y. Then

2(z —y) (@ +y+ay)
1+2)(1+vy)

flx) = fly) =

Since z —y < 0, z+y+zy > 0 (by Question 1) and 1+ < 0 and 14y < 0, we conclude that f(z)— f(y) <0,
hence f(z) < f(y). Hence f is increasing on (—oo, 2].

. For x € (—oo, —1) (which is a neighborhood of +00),

222 2 o 2
=z — -0
1+zx 1+1/z 2—-o 140

Hence ¢ = —co.

. J = (—00,—8]. The —8 endpoint comes from the value of f(2).

. Since f is increasing on (—oo, —2|, ¢ is injective. Moreover, g(I) = f(I) = J = codomain of g, so g is

surjective. Hence ¢ is a bijection.

. inf(g) = inf J = —o0, sup(g) = sup J = —8. min(g) doesn’t exist since min(.J) doesn’t exist, and max(g) =

max(J) = —8.

. Let 2 € (—o0, —2] and y € (—o0, —8]. Then:

2

=y = =y < 222 —ay—y=0.
g9(z) =y T =Y —ay—y

We recognize a quadratic (in the variable z), the determinant of which is A = y? + 8y = y(y + 8). Since
y < —8< 0, A >0, and the solutions of the quadratic are

y+/yly+8) Yy —\yy+8)
4

d .
ar 4



Among these solutions, only the second one, i.e.,
y—Vyly+38)
1 .
belongs to (—oo, —2]. Indeed,!

ytvyly+8) o yt8 VU -y +8)
4 4
I e N
4

—/=(y+8) + v/~

_ (y 4) Y SThEs)
207

since —y — 8 < —y and hence /—(y + 8) < y/—y, so that

y+vyly+8)
0 > -2,

Moreover, the equality occurs if and only if y = —8 (in which case both solutions are equal to —2).

y-vyly+8) o yt8— vy -y +8)
4 4
I Th e N )
4

:_\/—(TEHH s
§07
so that
y—vyy+8)
1 < 2.

We hence conclude that:
gt (—o00, -8 — (=00, —2]

- 8
y LY i(y+ ).

9. Let y € (—o0, —8] (which is a neighborhood of —c0). Then,
y—Vyy+8) _y— V(1 +38/y)
4

4
Y= VV1+8/y
4

_y—lylv1+8/y

4
_ytyv1+8/y

4
14148y

1

— = —00 X — = —00.
Y——00 4

The other limit is straightforward:

y—yly+8) -8
hm —_— = — = —2.
y——8 4 4

1 notice that y < 0 and y + 8 < 0, so that /y(y + 8) = vV—yv/—y — 8 = vV/—y/—(y + 8).



