No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1 (Differential Equations). The three questions of this exercise are independent from each other.

- 1. Let $y_0, v_0 \in \mathbb{R}$.
 - a) Give the solution of the following initial value problem:

(IVP)
$$\begin{cases} y'' - y' - 2y = 0 \\ y(0) = y_0 \\ y'(0) = v_0. \end{cases}$$

- b) Let y be the solution of Problem (IVP). Prove that $\lim_{x\to +\infty} y(x) = 0$ if and only if $y_0 = -v_0$.
- 2. Give the general solution of the following differential equation:

(*)
$$y'(x) - 3y(x) = 2\cos(3x)$$
.

3. Find a second order, linear, differential equation with constant coefficients that has the following general solution:

$$y(x) = e^{-3x} (A\cos(2x) + B\sin(2x)) + 1.$$

Exercise 2 (Hyperbolic Functions). The goal of this exercise is to find the solution(s) (if any) of the following equation in $x \in \mathbb{R}$, by following a specific method.

$$(*) 4\cosh(x) + 5\sinh(x) = 6.$$

- 1. Recall the addition formula for sinh.
- 2. Explain why it's not possible to find $\alpha \in \mathbb{R}$ such that

$$\begin{cases} \sinh(\alpha) = 4 \\ \cosh(\alpha) = 5. \end{cases}$$

Hint: use the Pythagorean Theorem.

So we're quite sad that we can't write Equation (*) as $sinh(\alpha + x) = 6$ (because that would be "easy" to solve).

3. Find $\mu \in \mathbb{R}_+^*$ and $\alpha \in \mathbb{R}$ such that:

$$\forall x \in \mathbb{R}, \left(4\cosh(x) + 5\sinh(x) = 6 \iff \sinh(\alpha + x) = \frac{6}{\mu}\right).$$

4. Deduce all the solutions $x \in \mathbb{R}$ of Equation (*). Simplify your answer as much as you can²

$$\lim_{x \to +\infty} e^x = +\infty \quad \text{and} \quad \lim_{x \to -\infty} e^x = 0.$$

²To help simplify your answer, we recall that:

$$\forall x \in \mathbb{R}, \ \operatorname{arcsinh}(x) = \ln\left(x + \sqrt{1 + x^2}\right).$$

¹You're given the values of the following limits, in case you need them:

Exercise 3 (Limits). The questions of this exercise are independent from each other. The questions about computing limits are phrased as "compute the value of the following limit." If a limit you're asked to compute doesn't exist, prove that it doesn't exist.

1. Compute the value of the following limit.

$$\ell = \lim_{x \to 2} \frac{3}{x^3 - 3x - 2} - \frac{1}{x^2 - x - 2}.$$

Hint: use the factored of the denominators to cross multiply the fractions (there are obvious roots!)

2. Let $f: \mathbb{R} \to [1, +\infty)$ be a function. Compute the value of the following limit.

$$\ell = \lim_{x \to +\infty} \frac{x\sqrt{2+x^2}}{(1+x^3)f(x)}$$

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that

$$\forall x \in \mathbb{R}, 1 + x^2 \le f(x) \le 1 + 2x^2.$$

- a) Determine the value of the limit $a = \lim_{x \to 0} f(x)$.
- b) Determine the value of the limit $b = \lim_{x \to +\infty} f(x)$.
- c) Determine the value of the limit $c = \lim_{x \to +\infty} \sin(x) + f(x)$.
- d) Determine the value of the limit $d = \lim_{x \to +\infty} \frac{f(x)}{x^3}$.

Exercise 4. We define the function f as

$$f: \mathbb{R} \setminus \{-1\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{2x^2}{1+x}$$

1. Preliminary question (that will be useful in Question 3 below): prove that for all $x, y \in \mathbb{R}$ such that $x < y \le -2$ one has

$$x + y + xy > 0.$$

Hint: start with the inequality $y \le -2$, multiply it by x (be careful with the sign of x) and then add x + y.

- 2. Let $x \in \mathbb{R} \setminus \{-1\}$. Compare A = f(x) + 4 and B = f(-x 2) + 4 (and, while you're at it, briefly justify why f(-x 2) is defined). What can you conclude about the graph of f?
- 3. Determine (without using derivatives) the variations of f on $I = (-\infty, -2]$. You may use the result of Question 1.
- 4. Compute the value of the following limit (or if the limit doesn't exist, prove its non-existence):

$$\ell = \lim_{x \to -\infty} f(x).$$

- 5. Determine the interval J = f(I) (no justifications required).
- 6. Briefly explain why the function g defined by

$$g: I \longrightarrow J$$

 $x \longmapsto f(x)$

is a bijection.

- 7. Determine $\inf(g)$ and $\sup(g)$. Do $\min(g)$ and $\max(g)$ exist?
- 8. Determine the function g^{-1} explicitly.
- 9. Compute the limits of g^{-1} at the endpoints of the interval J.