

January 11, 2018

## Exercise 1.

1. Let  $n \in \mathbb{N}^*$ .

$$\frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right) = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right)$$
$$\leq \frac{1}{n+1} - \frac{1}{n+1} = 0,$$
$$\frac{1}{n+1} + \ln\left(\frac{n+2}{n+1}\right) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n+1}\right)$$
$$\geq \frac{1}{n+1} - \frac{1}{n+1} = 0,$$

where we used the given inequality with, in the first case,  $x = -1/(n+1) \in (-1, +\infty)$  and, in the second case,  $x = 1/(n+1) \in (-1, +\infty)$ .

2. Let  $n \in \mathbb{N}^*$ . Then

$$u_{n+1} - u_n = -\ln(n+1) + \sum_{k=1}^{n+1} \frac{1}{k} + \ln(n) - \sum_{k=1}^n \frac{1}{k} = \ln\left(\frac{n}{n+1}\right) + \frac{1}{n+1} \le 0$$

and

$$v_{n+1} - v_n = u_{n+1} - u_n + \ln\left(\frac{n+1}{n+2}\right) - \ln\left(\frac{n}{n+1}\right)$$
$$= \ln\left(\frac{n}{n+1}\right) + \frac{1}{n+1} + \ln\left(\frac{n+1}{n+2}\right) - \ln\left(\frac{n}{n+1}\right)$$
$$= \frac{1}{n+1} + \ln\left(\frac{n+1}{n+2}\right)$$
$$= \frac{1}{n+1} - \ln\left(\frac{n+2}{n+1}\right)$$
$$\ge 0.$$

Hence the sequence  $(u_n)_{n\in\mathbb{N}^*}$  is non-increasing and the sequence  $(v_n)_{n\in\mathbb{N}^*}$  is non-decreasing.

3. From the previous question, we already know that the sequences  $(u_n)_{n \in \mathbb{N}^*}$  and  $(v_n)_{n \in \mathbb{N}^*}$  have opposite variations; so we only need to show that the limit of their difference is nil: let  $n \in \mathbb{N}^*$ . Then:

$$v_n - u_n = \ln\left(\frac{n}{n+1}\right) \xrightarrow[n \to +\infty]{} \ln(1) = 0$$

(since ln is continuous at 1). Hence the sequences  $(u_n)_{n \in \mathbb{N}^*}$  and  $(v_n)_{n \in \mathbb{N}^*}$  are adjacent sequences.

4. Since the sequences  $(u_n)_{n \in \mathbb{N}^*}$  and  $(v_n)_{n \in \mathbb{N}^*}$  are adjacent, they converge to the same limit. In particular, we conclude that the limit  $\gamma$  exists, as the limit of the sequence  $(u_n)_{n \in \mathbb{N}^*}$ .

Moreover, from the variations of  $(u_n)_{n \in \mathbb{N}^*}$  and  $(v_n)_{n \in \mathbb{N}^*}$  we have:

 $v_1 \le \gamma \le u_1,$ 

and the result follows from the values  $u_1 = 1$  and  $v_1 = 1 + \ln(1/2) = 1 - \ln(2)$ .

# Exercise 2.

1.  $\arccos: [-1,1] \rightarrow [0,\pi]$ , is decreasing, and its graph is given on Figure 2.

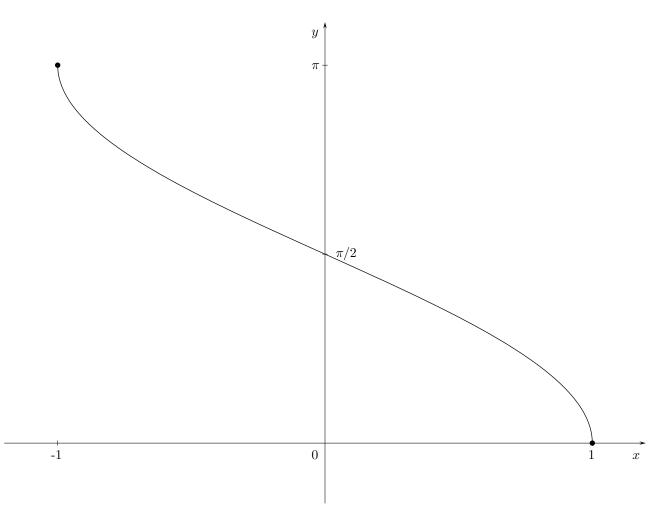


Figure 2 – Graph of the arccos function

## 2. Let $x \in \mathbb{R}$ . Then:

$$\operatorname{arccos}(e^{x} - 1) \text{ is defined } \iff -1 \leq e^{x} - 1 \leq 1$$
$$\iff 0 \leq e^{x} \leq 2$$
$$\iff e^{x} \leq 2$$
$$\iff x \leq \ln(2)$$
since  $e^{x} > 0$ since

Hence  $D = (-\infty, \ln 2]$ .

- 3. We know that exp is increasing, hence  $x \mapsto e^x 1$  is increasing; now composed with arccos (which is decreasing), we conclude that f is decreasing.
- 4. We know that  $\lim_{x \to -\infty} e^x 1 = -1$ , and that arccos is continuous at -1, hence

$$\ell = \lim_{x \to -\infty} f(x) = \arccos(-1) = \pi.$$

5. f is the composition of continuous functions, hence f is continuous. By (a corollary of) the Intermediate Value Theorem, and since f is decreasing, we have:

$$f(D) = [f(\ln 2), \ell] = [\arccos(1), \pi] = [0, \pi).$$

**Exercise 3.** First observe that for  $n \in \mathbb{N}^*$ ,  $p_n > 0$ , as  $p_n$  is the product of positive terms. We can hence determine the variations of the sequence  $(p_n)_{n \in \mathbb{N}^*}$  by using the ratio of two consecutive terms: for  $n \in \mathbb{N}^*$ ,

$$\frac{p_{n+1}}{p_n} = 1 + \frac{1}{(n+1)^{\alpha}} > 1$$

hence the sequence  $(p_n)_{n \in \mathbb{N}^*}$  is increasing. By the Monotone Limit Theorem, the limit  $\lim_{n \to +\infty} p_n$  exists in  $\overline{\mathbb{R}}$ .

### Exercise 4.

- 1. Let I be a closed and bounded set (or interval) and let  $f: I \to \mathbb{R}$  be a continuous function. Then f is bounded and attains its bounds.
- 2. See what we did in class...

#### Exercise 5.

- 1. We know that  $\arctan : \mathbb{R} \to \mathbb{R}$  so that, for  $x \in \mathbb{R}_+$ ,  $\arctan(x)$  is well-defined; we also know that  $\arctan(x) = 0$  hence, for  $x \in \mathbb{R}_+$ ,  $\arctan(x) \ge 0$ ; and hence  $x \arctan(x) \ge 0$ , and we conclude that f is well-defined.
- 2. Let  $x \in \mathbb{R}^*_+$ . Then:

$$C = \frac{f(x)}{x} + xf\left(\frac{1}{x}\right) = \frac{x\arctan(x)}{x} + x\frac{1}{x}\arctan\left(\frac{1}{x}\right) = \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Hence C is independent of x and its value is  $\pi/2$ .

- 3. a) Let  $x, y \in \mathbb{R}_+$  such that x < y. We know that  $\arctan is$  increasing, hence  $0 \leq \arctan(x) < \arctan(y)$ ; and since  $0 \leq x < y$ , we have  $0 \leq x \arctan(x) < y \arctan(y)$ .
  - b) Since arctan is continuous, we conclude that f is also continuous. Since f is increasing we conclude, by (a corollary of) the Intermediate Value Theorem, that

$$f(\mathbb{R}_+) = \left[f(0), \lim_{+\infty} f\right)$$

Clearly, f(0) = 0. Moreover, we know that  $\lim_{+\infty} \arctan = \pi/2$ , and we hence conclude, by the elementary operations on limits that  $\lim_{+\infty} f = +\infty$ . Hence  $f(\mathbb{R}_+) = [0, +\infty) = \mathbb{R}_+$ , hence f is onto.

c) f is increasing (hence injective) and onto, hence f is a bijection. Since f is a continuous increasing bijection on an interval, we conclude that  $f^{-1}$  is continuous.

## Exercise 6.

1. a) For  $x \in \mathbb{R}^*$ :

$$\frac{g(x)}{x} = \frac{e^x - 1}{x} - \alpha \underset{x \to 0}{\longrightarrow} 1 - \alpha,$$

hence  $\ell_1 = 1 - \alpha < 0$ , since  $\alpha > 1$ .

b) By definition of the limit  $\ell_1$ , for  $\varepsilon = |\ell_1| = -\ell_1 > 0$ , there exists  $\delta > 0$  such that

$$\forall x \in (-\delta, 0) \cup (0, \delta), \ \left| \frac{g(x)}{x} - \ell_1 \right| < -\ell_1.$$

In particular, for  $x \in (0, \delta)$ ,

$$\frac{g(x)}{x} - \ell_1 < -\ell_1,$$

i.e.,

$$\frac{g(x)}{x} < 0.$$

2. For  $x \in \mathbb{R}^*_+$ ,

$$\frac{g(x)}{x} = \frac{e^x}{x} - \frac{1}{x} - \alpha \xrightarrow[x \to +\infty]{} +\infty - 0 - \alpha = +\infty,$$

where we use the well-known limit  $\lim_{x \to +\infty} e^x/x = +\infty$ .

- 3. We use the Intermediate Value Theorem:
  - The function g is continuous on  $\mathbb{R}$ , and hence on  $[\delta/2, M+1]$ ,
  - By Question 1.b),  $g(\delta/2) < 0$ ,
  - By Question 2., g(M+1) > 0,

hence, by the Intermediate Value Theorem, there exists  $x_0 \in (\delta/2, M+1)$  such that  $g(x_0) = 0$ .