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Exercise 1.

1. Let n ∈ N
∗.
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where we used the given inequality with, in the first case, x = −1/(n + 1) ∈ (−1,+∞) and, in the second
case, x = 1/(n+ 1) ∈ (−1,+∞).

2. Let n ∈ N
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Hence the sequence (un)n∈N∗ is non-increasing and the sequence (vn)n∈N∗ is non-decreasing.

3. From the previous question, we already know that the sequences (un)n∈N∗ and (vn)n∈N∗ have opposite
variations; so we only need to show that the limit of their difference is nil: let n ∈ N

∗. Then:
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(since ln is continuous at 1). Hence the sequences (un)n∈N∗ and (vn)n∈N∗ are adjacent sequences.

4. Since the sequences (un)n∈N∗ and (vn)n∈N∗ are adjacent, they converge to the same limit. In particular, we
conclude that the limit γ exists, as the limit of the sequence (un)n∈N∗ .

Moreover, from the variations of (un)n∈N∗ and (vn)n∈N∗ we have:

v1 ≤ γ ≤ u1,

and the result follows from the values u1 = 1 and v1 = 1 + ln(1/2) = 1− ln(2).

Exercise 2.

1. arccos : [−1, 1] → [0, π], is decreasing, and its graph is given on Figure 2.
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Figure 2 – Graph of the arccos function

2. Let x ∈ R. Then:

arccos
(

ex − 1
)

is defined ⇐⇒ −1 ≤ ex − 1 ≤ 1

⇐⇒ 0 ≤ ex ≤ 2

⇐⇒ ex ≤ 2 since ex > 0

⇐⇒ x ≤ ln(2) since ln is increasing..

Hence D = (−∞, ln 2].

3. We know that exp is increasing, hence x 7→ ex − 1 is increasing; now composed with arccos (which is
decreasing), we conclude that f is decreasing.

4. We know that lim
x→−∞

ex − 1 = −1, and that arccos is continuous at −1, hence

ℓ = lim
x→−∞

f(x) = arccos(−1) = π.

5. f is the composition of continuous functions, hence f is continuous. By (a corollary of) the Intermediate
Value Theorem, and since f is decreasing, we have:

f(D) =
[

f(ln 2), ℓ
)

=
[

arccos(1), π
)

= [0, π).

Exercise 3. First observe that for n ∈ N
∗, pn > 0, as pn is the product of positive terms. We can hence

determine the variations of the sequence (pn)n∈N∗ by using the ratio of two consecutive terms: for n ∈ N
∗,
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hence the sequence (pn)n∈N∗ is increasing. By the Monotone Limit Theorem, the limit lim
n→+∞

pn exists in R.



Exercise 4.

1. Let I be a closed and bounded set (or interval) and let f : I → R be a continuous function. Then f is
bounded and attains its bounds.

2. See what we did in class...

Exercise 5.

1. We know that arctan : R → R so that, for x ∈ R+, arctan(x) is well-defined; we also know that arctan is
increasing and arctan(0) = 0 hence, for x ∈ R+, arctan(x) ≥ 0; and hence x arctan(x) ≥ 0, and we conclude
that f is well-defined.

2. Let x ∈ R
∗
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Hence C is independent of x and its value is π/2.

3. a) Let x, y ∈ R+ such that x < y. We know that arctan is increasing, hence 0 ≤ arctan(x) < arctan(y); and
since 0 ≤ x < y, we have 0 ≤ x arctan(x) < y arctan(y).

b) Since arctan is continuous, we conclude that f is also continuous. Since f is increasing we conclude, by
(a corollary of) the Intermediate Value Theorem, that

f(R+) =
[

f(0), lim
+∞

f
)

.

Clearly, f(0) = 0. Moreover, we know that lim
+∞

arctan = π/2, and we hence conclude, by the elementary

operations on limits that lim+∞ f = +∞. Hence f(R+) = [0,+∞) = R+, hence f is onto.

c) f is increasing (hence injective) and onto, hence f is a bijection. Since f is a continuous increasing

bijection on an interval, we conclude that f−1 is continuous.

Exercise 6.

1. a) For x ∈ R
∗:
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hence ℓ1 = 1− α < 0, since α > 1.

b) By definition of the limit ℓ1, for ε = |ℓ1| = −ℓ1 > 0, there exists δ > 0 such that
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In particular, for x ∈ (0, δ),
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where we use the well-known limit lim
x→+∞

ex/x = +∞.

3. We use the Intermediate Value Theorem:

• The function g is continuous on R, and hence on [δ/2,M + 1],

• By Question 1.b), g(δ/2) < 0,

• By Question 2., g(M + 1) > 0,

hence, by the Intermediate Value Theorem, there exists x0 ∈ (δ/2,M + 1) such that g(x0) = 0.


