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Exercise 1.

1. The function sin is of class C6 on [0, 1/4] and 7 times differentiable on (0, 1/4) hence, by the Taylor–Lagrange
formula, there exists c ∈ (0, 1/4) such that

sin(1/4) =

6
∑

k=0

sin(k)(0)
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.

Now since 0 < c < 1/4 < π/2 and since cos is decreasing on [0, π/2], 1 > cos(c) > 0, hence −1 < − cos(c) < 0
and hence
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2. From the values given by the calculator, we conclude:

0.24740395 < 0.247403959244016617 063492 < sin(1/4) < 0.2474039713541 6 < 0.24740398.

Hence,

sin

(

1

4

)

= 0.2474039 . . .

Exercise 2.

1. By long divisions we obtain:

1

sin(x)
=

x→0

1

x
+

x

6
+ o
(

x2
)

,
1

ln(1 + x)
=

x→0

1

x
+

1

2
− x

12
+

x2

24
+ o
(

x2
)

,

hence

f(x) =
x→0

= −1

2
+

x

4
− x2

24
+ o
(

x2
)

.

We conclude that lim
x→0

f(x) = −1/2 ∈ R, hence f possesses an extension by continuity at 0:

f̃ : (−1, π) −→ R

x 7−→
{

f(x) if x 6= 0

−1/2 if x = 0.

Moreover, f̃ possesses a first order Taylor–Young expansion at 0, hence f̃ is differentiable at 0, and f̃ ′(0) = 1/4.
An equation of ∆ is:

∆: y = −1

2
+

x

4
.

Since the quadratic term of the Taylor–Young expansion of f̃ is negative we conclude that the graph of f̃ lies
below ∆ in a neighborhood of 0.

2. See Figure 3.

Exercise 3.

1. For n ∈ N
∗,
(

1 +
1

n

)n

− e = exp

(

n ln

(

1 +
1

n

))

− e
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Figure 3 – Graph of function f̃ of Exercise 2 (plain) and its tangent line ∆ at (0,−1/2) (dashed).

= e
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)
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)

∼
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e

(
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since n ln
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)
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0

Now,
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)

=
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1

n
− 1

2n2
+ o

(

1
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)

,

hence
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)

− 1 =
n→+∞

− 1

2n
+ o
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)

∼
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,

and we conclude:
(
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n

)n

− e ∼
n→+∞

− e

2n
.

2. For x ∈ R
∗

+,
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∼
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1
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3. Using the composition of the usual Taylor–Young expansions, we obtain:

ln
(

cos(x)
)

=
x→0

−x2

2
− x4

12
+ o
(

x4
)

,



hence

ln
(

cos(x)
)

+
x2

2
=

x→0
−x4

12
+ o
(

x4
)

∼
x→0

−x4

12
.

Exercise 4. By dividing the Taylor–Young expansions of sin and cos, we obtain:

tan(x) =
x→0

x+
x3

3
+

2

15
x5 + o

(

x5
)

.

Hence,

tan(x)− x− x3

3
=

x→0

2

15
x5 + o

(

x5
)

∼
x→0

2

15
x5.

Hence,
tan(x)− x− x3/3
(

cos(x)− 1
)

sin3(x)
∼

x→0

2x5/15

−x2/2× x3
= − 4

15
−→
x→0

− 4

15

Exercise 5.

1. The function f is differentiable on R and for x ∈ R one has:

f ′(x) = ex
(

cos(x)− sin(x)
)

.

We look for the zeroes of f ′: for x ∈ R,

f ′(x) = 0 ⇐⇒ cos(x) = sin(x) ⇐⇒ ∃k ∈ Z, x =
π

4
+ kπ.

It is now easy to deduce that

• ∀x ∈ (−3π/4, π/4), f ′(x) > 0,

• ∀x ∈ (−7π/4,−3π/4) ∪ (π/4, 5π/4), f ′(x) < 0,

hence I = (−3π/4, π/4).

We can also determine J , using (a corollary of) the Intermediate Value Theorem:

J = f(I) =
[

f(−3π/4), f(π/4)
]

=

[

−
√
2

2
e−3π/4,

√
2

2
eπ/4

]

.

2. By the Inverse Function Theorem, since g is an increasing bijection, differentiable on I and such that
∀x ∈ I, g′(x) 6= 0, we conclude that g−1 is differentiable on I. Moreover,

∀y ∈ J,
(

g−1
)′

(y) =
1

g′
(

g−1
)

(y)
=

1

eg−1(y)
(

cos
(

g−1(y)
)

− sin
(

g−1(y)
)

) .

3. By multiplying the usual Taylor–Young expansions of exp and cos at 0 we obtain:

g(x) =
x→0

1 + x− x3

3
− x4

6
+ o
(

x4
)

.

4. Since we’re given that g−1 is of class C∞ on J and 1 ∈ J , we conclude that g−1 is 4 times differentiable at 1.
Hence, by the Taylor–Young Theorem, g−1 possesses a 4-th order Taylor–Young expansion at 1 of the form

g−1(y) =
y→1

r + s(y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4 + o
(

(y − 1)4
)

.

5. We know that r = g−1(1) and s =
(

g−1
)′

(1). Now, since g(0) = 1 we conclude that r = g−1(1) = 0. Also,

s =
(

g−1
)′

(1) =
1

e0
(

cos(0)− sin(0)
) = 1.

At this point we have:

g−1(y) =
y→1

(y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4 + o
(

(y − 1)4
)

.



6.

y = 1 + (y − 1) = g
(

g−1(y)
)

=
y→1

1 + g−1(y)−
(

g−1(y)
)3

3
−
(

g−1(y)
)4

6
+ o
(

(
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)4
)

=
y→1

1 + (y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4 + o
(
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)

− 1

3

(

(y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4 + o
(

(y − 1)4
)

)3

− 1

6

(

(y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4 + o
(

(y − 1)4
)

)4

+ o
(

(

g−1(y)
)4
)

=
y→1

1 + (y − 1) + t(y − 1)2 + u(y − 1)3 + v(y − 1)4

− 1

3
(y − 1)3 − 1

6
(y − 1)4 + o

(

(y − 1)4
)

since g−1(y) ∼
y→1

(y − 1)

=
x→1

1 + (y − 1) + t(y − 1)2 +

(

u− 1

3

)

(y − 1)3 +

(

v − 1

6

)

(y − 1)4 + o
(

(y − 1)4
)

.

Using the uniqueness of a Taylor–Young expansion, and identifying this term with y = 1+ (y− 1), we obtain:

t = 0, u =
1

3
, and v =

1

6
.

Hence,

g−1(y) =
y→1

(y − 1) +
1

3
(y − 1)3 +

1

6
(y − 1)4 + o

(

(y − 1)4
)

.

Exercise 6.

1. We know that the sequence (un)n∈N∗ is increasing and bounded from above (by 1) hence, by the Monotone
Limit Theorem, the sequence (un)n∈N∗ converges, say ℓ = lim

n→+∞

un ∈ [1/e, 1].

Now, from the definition of the sequence (un)n∈N∗ ,

∀n ∈ N
∗, f(un) = − 1

n
,

and since f is continuous at ℓ ∈ [1/e, 1] ⊂ R
∗

+ we must have (by taking the limit as n → +∞):

f(ℓ) = 0,

i.e., ℓ ln(ℓ) = 0, hence (since ℓ 6= 0), ln(ℓ) = 0 from which we deduce that ℓ = 1.

2. a) Since un −→
n→+∞

1, we have:

un ln(un) ∼
n→+∞

un − 1 = vn,

where we used the well-known equivalent ln(X) ∼
X→1

X − 1.

b) We hence have:

− 1

n
= f(un) ∼

n→+∞

vn = un − 1,

i.e.,
lim

n→+∞

−n(un − 1) = 1,

hence
lim

n→+∞

−n(un − 1)− 1 = 0,

hence

lim
n→+∞

n

(

un − 1 +
1

n

)

= 0,

i.e.,

un − 1 +
1

n
=

n→+∞

o

(

1

n

)

,

as required.



3. Let n ∈ N
∗. From f(un) = −1/n we obtain un ln(un) = −1/n hence (since un 6= 0), ln(un) = −1/nun hence

un = exp

(

− 1

nun

)

.

Now

nun =
n→+∞

n

(

1− 1

n
+ o

(

1

n

))

=
n→+∞

n− 1 + o(1)

hence,

− 1

nun
=

n→+∞

− 1

n− 1 + o(1)

=
n→+∞

− 1

n

(

1

1− 1/n+ o(1/n)

)

=
n→+∞

− 1

n

(

1 +
1

n
+ o

(

1

n

))

=
n→+∞

− 1

n
− 1

n2
+ o

(

1

n2

)

.

Hence

un = exp

(

− 1

nun

)

=
n→+∞

1 +

(

− 1
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)

+
1

2

(

− 1

nun

)2

+ o

(

(

1

nun

)2
)

=
n→+∞

1 +

(

− 1

n
− 1

n2

)

+
1

2

1

n2
+ o

(

1
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)

=
n→+∞

1− 1

n
− 1

2n2
+ o

(

1
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)

.

Hence a = −1/2.

Exercise 7. The value of the Riemann sum is:

R = 0.12 × 0.5 + 0.72 × 0.3 + 0.92 × 0.2 = 0.314.

The exact value of I is (using the Fundamental Theorem of Calculus):

I =

∫ 1

0

t2 dt =

[

t3

3

]t=1

t=0

=
1

3
.


