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Exercise 1.

1. The function sin is of class C°® on [0,1/4] and 7 times differentiable on (0, 1/4) hence, by the Taylor-Lagrange
formula, there exists ¢ € (0,1/4) such that

k=0
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Now since 0 < ¢ < 1/4 < 7/2 and since cos is decreasing on [0,7/2], 1 > cos(c) > 0, hence —1 < —cos(c) < 0
and hence ; ;
1 1 1
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2. From the values given by the calculator, we conclude:

hence

0.24740395 < 0.247403959244016617 063492 < sin(1/4) < 0.2474039713541 6 < 0.24740398.

Hence,

1
sin (4) =0.2474039. ..

Exercise 2.

1. By long divisions we obtain:

L _ 12 @) 1 _ l+l_£+£2+o($2)
sin(z) =—0 z 6 ’ In(l+x)z=02 2 12 24 ’
hence )
1 z = 5
We conclude that lin% f(z) = —=1/2 € R, hence f possesses an extension by continuity at 0:
T—
f: (-1,7) — R
N flz) ifz#0
—-1/2 ifx=0.

Moreover, f possesses a first order Taylor—Young expansion at 0, hence f is differentiable at 0, and f’ (0) =1/4.

An equation of A is:

1 x
Ary=—=-42
y=9hg

Since the quadratic term of the Taylor—Young expansion of f is negative we conclude that the graph of f lies
below A in a neighborhood of 0.

2. See Figure 3.

Exercise 3.

1. For n € N*,

(+3) e (om(1+2)



Figure 3 — Graph of function f of Exercise 2 (plain) and its tangent line A at (0, —1/2) (dashed).
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Now,

hence

and we conclude:

2. For r € RY,
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3. Using the composition of the usual Taylor—Young expansions, we obtain:

2 4

In(cos(z)) o —% - % +o(z*),



hence

z? zt x?
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Exercise 4. By dividing the Taylor—Young expansions of sin and cos, we obtain:

tan(z) = x—g 20 >
) =t T +o(z°).

z— 3 15
Hence,
a3 2 5 5 2 5
tan(z) — o — 3 .S01” T o) 250 15"
Hence,
tan(z) —z — 23/3 20°/15 4 N 4
(cos(z) — 1) sin®(z) =0 —22/2 x 23 1520 15

Exercise 5.

1. The function f is differentiable on R and for € R one has:
f'(z) = €”(cos(z) — sin(z)).

We look for the zeroes of f’: for z € R,
() =0 < cos(z) =sin(z) < Ik e€Z, v = % + k.

It is now easy to deduce that
o Vo € (=3n/4,w/4), f'(x) >0,
o V€ (—Tr/4,—3n/4) U (n/4,5m/4), f'(x) <O,
hence I = (—3w/4,7/4).
We can also determine J, using (a corollary of) the Intermediate Value Theorem:

2 2

J = (1) = [f(=3n/4), f(r/2)] = [—f/ f/] .

2. By the Inverse Function Theorem, since g is an increasing bijection, differentiable on I and such that
Vaz € I, ¢'(z) # 0, we conclude that g—! is differentiable on I. Moreover,

oy 1 - !
vyed, (97) () = g Y) e (cos(g_l(y)) - Sin(g_l(y))> |

3. By multiplying the usual Taylor—Young expansions of exp and cos at 0 we obtain:

3 ozt
g(z) xjol—'_x_ 3 F—i—o(x‘l).

1 1

4. Since we'’re given that ¢~ is of class C"°° on J and 1 € J, we conclude that ¢~ is 4 times differentiable at 1.
Hence, by the Taylor-Young Theorem, g—! possesses a 4-th order Taylor-Young expansion at 1 of the form

9 W) = r+sly—D+tly - D)7 +uly—1)° +oly = 1) +o(ly - 1)).

5. We know that r = g=!(1) and s = (g_l)l(l). Now, since g(0) = 1 we conclude that r = g=1(1) = 0. Also,

—1\/ _ 1 =
s=(g7) )= e¥(cos(0) — sin(0)) .

At this point we have:

g W) = (- +tly—1+uly—1>+vly -1 +o((y—1)*).

y—1



4

-1 3 -1
y=1+-D=9(9"'W) = 1+9 ') - (g 3(9)) _ éy)) +o((s7')")
S 1+ @y—D+tly—1)*+uly—1>+ovy—1)*+ 0((y — 1)4)
(=Dt 1 bty = 1P ol ) oty - 1))
(D=1 Fuly 1P ol D ol - 1))

= 14+ @w—-1D)+tly—1)+uly—1)> 4oy —1)*

y—1
1 1
—5=1 = -1 +o(ly— 1)) since 9~ (y) ~ (y—=1)
1 ; 1
= 1+@y—-1+tly—1)>*+ <u—> (y —1)% + (u—) (y—1*+o((y —1)?).
z—1 3 6
Using the uniqueness of a Taylor-Young expansion, and identifying this term with y = 1+ (y — 1), we obtain:
1 1
t=0, U=, and v=—.
3 6

Hence,

Exercise 6.

1. We know that the sequence (uy)nen+ is increasing and bounded from above (by 1) hence, by the Monotone
Limit Theorem, the sequence (u,)nen+ converges, say £ = 1iIJ1;1 un € [1/e,1].
n—-+0oo

Now, from the definition of the sequence (uy)nen-,

1
Vn € N*v f(un) = _ﬁa

and since f is continuous at £ € [1/e, 1] C RY we must have (by taking the limit as n — 4-00):

f) =0,
i.e., £In(¢) = 0, hence (since ¢ # 0), In(¢) = 0 from which we deduce that ¢ = 1.

2. a) Since u, — 1, we have:
n—-+o0o

Uy, In(u ~ u,—1=w
n (n)n‘)+oo n nsy

where we used the well-known equivalent In(X) ~ ) X -1

X—
b) We hence have:

ie.,
ngrfoo —n(u, — 1) =1,
hence
lim —n(u, —1)—1=0,
n—-+oo
hence )
lim n (un 1+ > =0,
n—-+oo n
ie.,

as required.



3. Let n € N*. From f(u,) = —1/n we obtain u, In(u,) = —1/n hence (since u,, # 0), In(uy,)

1
Up = €XP —W .
n

= —1/nu,, hence

Now
1 1
nu, = n(l——i—o()) = n-—1+0(1)
n—-+oo n n n—-+00
hence,
1 1
N, n—+oo 1 — 1+ o(1)
1 1
n—stoo n \1—1/n+o(1/n)
1 1
BRI
n—+oco N n n
1 1 1
= _——— — [0} —_—
n—+oo 1 n2 n2
Hence

Hence a = —1/2.
Exercise 7. The value of the Riemann sum is:

R=0.1*x0.5+0.7" x 0.340.9% x 0.2 = 0.314.
The exact value of I is (using the Fundamental Theorem of Calculus):

1 3qt=1
t 1
I/tzdt{ } = .
0 31,y 3



