Exercise 1. Define the function

$$
\begin{aligned}
h: \quad[0,1] & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x)-g(x) .
\end{aligned}
$$

We apply the Intermediate Value Theorem to h :

- h is continuous since f and g are continuous,
- $h(0)=f(0)-g(0)=-g(0) \leq 0$ since $g(0) \in[0,1]$,
- $h(1)=f(1)-g(1)=1-g(1) \geq 0$ since $g(1) \in[0,1]$,
hence, by the Intermediate Value Theorem, there exists $x_{0} \in[0,1]$ such that $h\left(x_{0}\right)=0$, i.e., such that $f\left(x_{0}\right)=$ $g\left(x_{0}\right)$.

Exercise 2.

1. - Clearly, $g_{0}(0)=1$, and if $N \in \mathbb{N}^{*}$,

$$
g_{N}(0)=1+\sum_{k=1}^{N} \frac{x^{k}}{k!}=1+0=1
$$

Hence, $\forall N \in \mathbb{N}$, $g_{N}(0)=1$.

- Let $N \in \mathbb{N}^{*}$ and $x \in \mathbb{R}$. Then:

$$
\begin{aligned}
g_{N}^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{N}}{N!}\right) \\
& =0+1+x+\frac{x^{2}}{2}+\cdots+N \frac{x^{N-1}}{N!} \\
& =1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{N-1}}{(N-1)!} \\
& =g_{N-1}(x) .
\end{aligned}
$$

Hence $g_{N}^{\prime}=g_{N-1}$.

- Let $N \in \mathbb{N}^{*}$. By the product rule we obtain, for $x \in \mathbb{R}$:

$$
\begin{aligned}
f_{N}^{\prime}(x) & =-\mathrm{e}^{-x} g_{N}(x)+\mathrm{e}^{-x} g_{N}^{\prime}(x)=\mathrm{e}^{-x}\left(g_{N}^{\prime}(x)-g_{N}(x)\right) \\
& =\mathrm{e}^{-x}\left(g_{N-1}(x)-g_{N}(x)\right) \\
& =-\mathrm{e}^{-x} \frac{x^{N}}{N!} .
\end{aligned}
$$

- For $N=0$,

$$
f_{0}^{\prime}(x)=-\mathrm{e}^{-x}=-\mathrm{e}^{-x} \frac{x^{0}}{0!} .
$$

Hence the statement is also true for $N=0$. So that:

$$
\forall N \in \mathbb{N}, \forall x \in \mathbb{R}, \quad f_{N}^{\prime}(x)=-\mathrm{e}^{-x} \frac{x^{N}}{N!}
$$

2. Let $N \in \mathbb{N}^{*}$ and $x \in \mathbb{R}$. Then:

$$
f_{N}^{\prime \prime}(x)=\mathrm{e}^{-x} \frac{x^{N}}{N!}-\mathrm{e}^{-x} N \frac{x^{N-1}}{N!}=\mathrm{e}^{-x}\left(\frac{x^{N}}{N!}-\frac{x^{N-1}}{(N-1)!}\right)=\mathrm{e}^{-x} \frac{x^{N-1}}{(N-1)!}\left(\frac{x}{N}-1\right) .
$$

Now if $x \in(0,1), x / N-1<0$, and all the other factors in $f_{N}^{\prime \prime}(x)$ are positive, hence $f_{N}^{\prime \prime}(x)<0$, and we conclude (since $[0,1]$ is an interval) that f_{N}^{\prime} is decreasing on $[0,1]$.
The function f_{0}^{\prime} is clearly increasing.
3. Let $N \in \mathbb{N}^{*}$. We know that:

- f_{N} is continuous on $[0,1]$,
- f_{N} is differentiable on $(0,1)$,
hence, by the Mean Value Theorem, there exists $c \in(0,1)$ such that

$$
f_{N}(1)-f_{N}(0)=f_{N}^{\prime}(c)
$$

Since f_{N}^{\prime} is decreasing and since $0<c<1$, we conclude that:

$$
f_{N}^{\prime}(1)<f_{N}(1)-f_{N}(0)<f_{N}^{\prime}(0)
$$

Hence:

$$
-\frac{\mathrm{e}^{-1}}{N!}<\mathrm{e}^{-1} g_{N}(1)-1<0
$$

hence (multiplying by e >0):

$$
-\frac{1}{N!}<g_{N}(1)-\mathrm{e}<0
$$

hence the result.
4. Since $1 / N!\underset{N \rightarrow+\infty}{\longrightarrow} 0$ we conclude, by the Squeeze Theorem, that $g_{N}(1) \underset{N \rightarrow+\infty}{\longrightarrow} \mathrm{e}$, as required.
5. From the numerical values given, we conclude that

$$
2.7182<g_{7}(1)<2.7183
$$

We now use the inequality obtained in Question 2 in the case $N=7$, namely,

$$
g_{7}(1)<\mathrm{e}<g_{7}(1)+\frac{1}{7!},
$$

and we deduce:

$$
2.7182<g_{7}(1)<\mathrm{e}<g_{7}(1)+\frac{1}{7!}<2.7183+0.0002=2.7185
$$

Hence e $=2.718 \ldots$

Exercise 3.

1. We know that arcsin and arccos are differentiable on $(-1,1)$ hence, by the product rule, f is differentiable on $(-1,1)$ and:

$$
\forall x \in(-1,1), f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}(\arccos (x)-\arcsin (x)) .
$$

2. Let $x \in(-1,1)$. Then the sign of $f^{\prime}(x)$ is that of $\arccos (x)-\arcsin (x)=\pi / 2-2 \arcsin (x)$. Since \arcsin is increasing and since $\arcsin (1 / \sqrt{2})=\pi / 4$ we conclude that

$$
\forall x \in(-1,1 / \sqrt{2}), f^{\prime}(x)>0 \quad \text { and } \quad \forall x \in(1 / \sqrt{2}, 1), f^{\prime}(x)<0
$$

Hence f is increasing on $[-1,1 / \sqrt{2}]$ and decreasing on $[1 / \sqrt{2}, 1]$.

Exercise 4.

1. We rewrite f using the exponential:

$$
\forall x \in \mathbb{R}, f(x)=\exp \left(x \ln \left(1+x^{2}\right)\right)
$$

and we compute f^{\prime} using the chain rule and the product rule:

$$
\forall x \in \mathbb{R}, f^{\prime}(x)=\left(\ln \left(1+x^{2}\right)+\frac{2 x^{2}}{1+x^{2}}\right)\left(1+x^{2}\right)^{x}
$$

2. For $x \in \mathbb{R}$,

$$
g^{\prime}(x)=\frac{\cosh (x)}{1+\sinh ^{2}(x)}-\frac{2 \mathrm{e}^{x}}{1+\mathrm{e}^{2 x}}=\frac{\cosh (x)}{\cosh ^{2}(x)}-\frac{2}{\mathrm{e}^{-x}+\mathrm{e}^{x}}=\frac{1}{\cosh (x)}-\frac{1}{\cosh (x)}=0 .
$$

Since \mathbb{R} is an interval, we conclude that g is constant. We determine the value of g by evaluating at 0 : $g(0)=-\pi / 2$, and we conclude that

$$
\arctan \circ \sinh =-\frac{\pi}{2}+2 \arctan \circ \exp
$$

Exercise 5. Let $x \in \mathbb{R}^{*}$. Then:

$$
\begin{array}{rlr}
\frac{(f g)(x)-(f g)(0)}{x} & =\frac{f(x) g(x)}{x} & \text { since } f(0)=0 \\
& =\frac{f(x)-f(0)}{x} g(x) & \text { since } f(0)=0 \\
& \xrightarrow[x \rightarrow 0]{\longrightarrow} 0, &
\end{array}
$$

since g is bounded and

$$
\frac{f(x)-f(0)}{x} \underset{x \rightarrow 0}{\longrightarrow} f^{\prime}(0)=0 .
$$

Exercise 6. We know that f is an increasing bijection and that f is differentiable. Let $y \in \mathbb{R}$. By the inverse function rule, we know that f^{-1} is differentiable at y if and only if $f^{\prime}\left(f^{-1}(y)\right) \neq 0$. Now,

$$
\forall x \in \mathbb{R}, f^{\prime}(x)=x^{2}-2 x+1=(x-1)^{2}
$$

hence f^{-1} is differentiable at y if and only if $f^{-1}(y) \neq 1$, if and only if $y \neq f(1)=\frac{1}{3}$. Hence, $D=\mathbb{R} \backslash\{1 / 3\}$. For $x \in f^{[-1]}(D)$,

$$
\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}=\frac{1}{(x-1)^{2}}
$$

Exercise 7. Using the well-known equivalents:

$$
\begin{gathered}
\arcsin (x) \underset{x \rightarrow 0}{\sim} \arctan (x) \underset{x \rightarrow 0}{\sim} x, \\
(1+X)^{1 / 3}-1 \underset{X \rightarrow 0}{\sim} \frac{X}{3}, \\
\cos (x)-1 \underset{x \rightarrow 0}{\sim}-\frac{x^{2}}{2}, \\
\cosh (X)-1 \underset{X \rightarrow 0}{\sim} \frac{X^{2}}{2},
\end{gathered}
$$

we obtain, by product, quotient and substitution:

$$
A(x) \underset{x \rightarrow 0}{\sim} \frac{x^{2} x \frac{\left(-x^{2}\right)}{2}}{\frac{\sin (x)}{3}\left(\frac{(2 x)^{2}}{2}\right)^{2}}=-\frac{3 x}{8 \sin (x)} \underset{x \rightarrow 0}{\longrightarrow}-\frac{3}{8}
$$

Exercise 8.

$$
\frac{f+g}{g}=\frac{f}{g}+1 \underset{a}{\longrightarrow} 0+1
$$

since $f / g \underset{a}{\longrightarrow} 0$ since $f \underset{a}{=} o(g)$.

