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Exercise 1.

1. Let n ∈ N∗.
un+1 − un =

1

(n+ 1)!
> 0,

hence (un)n∈N∗ is increasing.

vn+1 − vn = un+1 − un +
1

(n+ 1) · (n+ 1)!
− 1

n · n!

=
1

(n+ 1)!
+

1

(n+ 1) · (n+ 1)!
− 1

n · n!

=
n(n+ 1) + n− (n+ 1)2

n(n+ 1)(n+ 1)!

=
n2 + 2n− (n+ 1)2

n(n+ 1)(n+ 1)!

= − 1

n(n+ 1)(n+ 1)!
< 0,

hence (vn)n∈N∗ is decreasing.

2. For n ∈ N∗:
un − vn =

1

n · n!
−→

n→+∞
0.

Hence the sequences (un)n∈N∗ and (vn)n∈N∗ are adjacent sequences, hence they converge to the same limit.

3. a) Since the sequence (un)n∈N∗ is increasing and its limit is e and since the sequence (vn)n∈N∗ is decreasing
and its limit is also e we conclude that:

∀n ∈ N∗, un < e < vn,

and in particular (taking n = q):
uq < e < vq,

hence
uq · q! < e · q! < vq · q! = uq · q! +

1

q
.

b)

q! · uq =
q∑

k=0

q!

k!
.

All the terms in this sum are non-negative integers: indeed,
• if k = q then q!/k! = 1 ∈ N,
• and if 0 ≤ k ≤ q − 1,

q!

k!
=

q∏
m=k+1

m,

which is a product of non-negative integers, hence a non-negative integer.
Hence q! · uq ∈ N.

c) Since q ≥ 1, 1/q ≤ 1 and hence:
uq · q! < e · q! < uq · q! + 1,

hence
0 < e · q!− uq · q! < 1.

Now observe that e · q! = p · (q − 1)! ∈ N, hence e · q!− uq · q! ∈ N, which appears to be a contradiction,
since there are no integers in (0, 1)



Exercise 2.

1. We apply the Intermediate Value Theorem to the function fn on [0, 1]:

• The function fn is continuous (it’s a polynomial function),

• [0, 1] is an interval,

• fn(0) = −1 < 0,

• fn(1) = 2 > 0,

hence, by the Intermediate Value Theorem, there exists xn ∈ (0, 1) such that fn(xn) = 0.

To show that such an xn is unique, we only need to show that the function fn is injective: we know that for
α > 0, the function x 7→ xα is increasing on R+, hence fn is a sum of increasing (and constant) functions,
hence fn is increasing. Hence fn is injective, and xn is indeed unique.

2. a) Let n ∈ N. Then:
un+1 − un = fn+1(a)− fn(a) = an+1 − an = an(a− 1) < 0.

Hence (un)n∈N is decreasing.

b) Let n ∈ N: from the previous question (with a = xn+1) we know that

fn(xn+1) > fn+1(xn+1) = 0 = fn(xn).

Since fn is increasing, we conclude that xn+1 > xn,for otherwise, if xn+1 ≤ xn, we would have fn(xn+1) ≤
fn(xn), which is impossible. Hence (xn)n∈N is increasing.

c) Since the sequence (xn)n∈N is bounded from above (1 is an upper bound) and increasing we know, by the
Monotone Limit Theorem, that (xn)n∈N converges.

3. Let n ∈ N. Then:

fn

(
3

4

)
=

(
3

4

)n
+

(
3

4

)2

+

(
3

4

)
− 1 =

(
3

4

)n
+

5

16
≥ 5

16
> 0.

Since the function fn is increasing, we can’t have xn ≥ 3/4 for otherwise we would have fn(xn) ≥ f(3/4) > 0.

From:
0 < xn <

3

4

we deduce:

0 < xnn <

(
3

4

)n
.

Since 3/4 ∈ (0, 1),

lim
n→+∞

(
3

4

)n
= 0

and by the Squeeze Theorem we deduce that limn→+∞ xnn = 0.

4. We know that:
∀n ∈ N, xnn + x2n + xn − 1 = 0,

hence, by the elementary operations on limits (and using the result of the previous question and the fact that
(xn)n∈N converges to `):

`2 + `− 1 = 0.

The solutions of this quadratic are:
−1±

√
5

2
.

Since the values of (xn)n∈N are in (0, 1), we deduce that ` ∈ [0, 1], and the only possibility is:

` =
−1 +

√
5

2
.

Exercise 3. Covered in class. . .



Exercise 4.

1. Domain: [−1, 1]. Range: [0, π].

2. Let x ∈ R. Then:

−1 ≤ 1− x2

1 + x2
≤ 1 ⇐⇒ −1− x2 ≤ 1− x2 ≤ 1 + x2 ⇐⇒ −1 ≤ 1 ≤ 1 + x2,

which is always true (as x2 ≥ 0). Hence D = R.

3. a)

A(x) =
1

2

(
1− cos

(
f(x)

))
=

1

2

(
1− cos

(
arccos

(
1− x2

1 + x2

)))
=

1

2

(
1− 1− x2

1 + x2

)
=

x2

1 + x2
,

and

B(x) =
1

2

(
1 + cos

(
f(x)

))
=

1

2

(
1 + cos

(
arccos

(
1− x2

1 + x2

)))
=

1

2

(
1 +

1− x2

1 + x2

)
=

1

1 + x2
.

b) We notice that B(x) 6= 0, hence cos
(
f(x)/2

)
6= 0, hence C(x) = tan

(
f(x)/2

)
is well-defined. Moreover:

tan2
(
f(x)

2

)
=
A(x)

B(x)
= x2,

and we conclude:
C(x) = tan

(
f(x)

2

)
= |x|.

c) Since the range of arccos is [0, π], we conclude that the range of f is a subset of [0, π], hence f(x)/2 ∈ [0, π/2].
Since B(x) 6= 0 we moreover conclude that f(x)/2 ∈ [0, π/2) ⊂ (−π/2, π/2). Hence:

f(x)/2 = arctan
(
C(x)

)
= arctan|x|,

hence:
f(x) = 2 arctan|x| = 2

∣∣arctan(x)∣∣.
Exercise 5. Notice that

g(0) =
√
0 + 0f(0) = 0.

Let x ∈ R∗+. Then:
g(x)− g(0)
x− 0

=

√
x+ xf(x)

x
=

1√
x
+ f(x).

Now,

lim
x→0+

1√
x
= lim
x→0+

x−1/2 = +∞,

and since f is bounded we conclude, by (a corollary of) the Squeeze Theorem, that

lim
x→0+

g(x)− g(0)
x− 0

= +∞,

hence g is not differentiable (from the right) at 0.


