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Exercise 1.

1. If f is of class CN on [a, b] and N + 1 times differentiable on (a, b), there exists c ∈ (a, b) such that:

f(b) =

N∑
k=0

f (k)(a)

k!
(b− a)k +

f (N+1)(c)

(N + 1)!
(b− a)N+1.

2. The function exp is of class C4 on [0, 1/2] and four times differentiable on (0, 1/2) hence by the Taylor–
Lagrange formula, there exists c ∈ (0, 1/2) such that
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√
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and since exp is increasing and 0 < c < 1/2,

0 < ec <
√
e < 2.

Hence

0 <
ec

5!

(
1
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)5

<
1

16× 5!
=

1

16× 120
=

1

1920
<

1

2000
= 0.0005.

3. From the value given, we deduce:

1.6484 <
211

128
< 1.6485

and hence:
1.6484 <

√
e = e1/2 < 1.6485 + 0.0005 = 1.649.

Since the right inequality is a strict inequality, we conclude that
√

e = 1.648 . . .

Exercise 2.

1. The Mean Value Theorem is: let a, b ∈ R with a 6= b, and let f : [a, b]→ R such that f is continuous on [a, b]
and f is differentiable on (a, b). Then there exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

It is seen as a special case of Cauchy’s Mean Value Theorem by taking g(x) = x, since in this case g′(x) = 1.

2. Since f and g are continuous on [a, b] and differentiable on (a, b), by elementary operations, h is also continuous
on [a, b] and differentiable on (a, b). Moreover,

h(a) =
(
g(b)− g(a)

)
f(a)−

(
f(b)− f(a)

)
g(a) = g(b)f(a)− f(b)g(a)

and
h(b) =

(
g(b)− g(a)

)
f(b)−

(
f(b)− f(a)

)
g(b) = −g(a)f(b) + f(a)g(b),

and we conclude that h(a) = h(b). Hence we can apply Rolle’s Theorem, and we conclude that there exists
c ∈ (a, b) such that h′(c) = 0. The result follows from the fact that

h′(c) =
(
g(b)− g(a)

)
f ′(c)−

(
f(b)− f(a)

)
g′(c).



3. All the conditions of Cauchy’s Mean Value Theorem are fulfilled for the functions x and y on [0, 1]. Hence
there exists t0 ∈ (0, 1) such that (

x(1)− x(0)
)
y′(t0) = (y(1)− y(0)

)
x′(t0).

The velocity of the particle at t0 is ~vt0 =
(
x′(t0), y′(t0)

)
and the vector

−−−−→
M0M1 is

(
x(1)− x(0), y(1)− y(0)

)
.

By using the cross-product property to check whether these vectors are collinear, we find:(
x(1)− x(0)

)
y′(t0)− (y(1)− y(0)

)
x′(t0) = 0

i.e.,
−−−−→
M0M1 and ~vt0 are collinear. See Figure 3.
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Figure 3 – Trajectory of a particle: there exists a point where its velocity is collinear to
−−−−→
M0M1.

Exercise 3.

1. For x ∈ R∗+,
ln
(
ex + x

)
= ln

(
ex(xe−x + 1)

)
= x+ ln(xe−x + 1).

Now,
ln(xe−x + 1)

x
−→
x→+∞

0,

hence ln(xe−x + 1) =
x→+∞

o(x), and we conclude that

ln
(
ex + x

)
∼

x→+∞
x.



2. Let x ∈ R∗. Then: (
cosh(x)

)1/x2

= exp

(
1

x2
ln
(
cosh(x)

))
.

Now we know that cosh(x) −→
x→0

1 and that ln(X) ∼
X→1

X − 1, hence

ln
(
cosh(x)

)
∼
x→0

cosh(x)− 1 ∼
x→0

x2

2
.

Finally,
1

x2
ln
(
cosh(x)

)
∼
x→0

1

2
−→
x→0

1

2
,

and we conclude, by composition of limits, that

lim
x→0

(
cosh(x)

)1/x2

= e1/2.

3. Let x ∈ (−1,+∞). Then: √
1 + x2 − cos(x) =

√
1 + x2 − 1 + 1− cos(x).

We know that √
1 + x2 − 1 ∼

x→0

x2

2
and 1− cos(x) ∼

x→0

x2

2
.

Hence: √
1 + x2 − cos(x)

x2
=

√
1 + x2 − 1

x2
+

1− cos(x)

x2
−→
x→0

1

2
+

1

2
= 1,

hence √
1 + x2 − cos(x) ∼

x→0
x2.

Exercise 4.

1. By induction: the property is true for n = 0. Assume it is true for some n ∈ N, then fn+1(0) = efn(0) − 1 =
e0 − 1 = 0.

2. By the Taylor–Young theorem, we only need to show that all the fn’s are twice differentiable at 0: we can
proceed by induction: f0 is clearly twice differentiable at 0. Assume that fn is twice differentiable at 0 for
some n ∈ N then, since fn+1 is obtained by composition the twice differentiable function exp and fn we
conclude, by the Chain Rule, that fn+1 is also twice differentiable at 0.

3. We know that eX − 1 =
X→0

X +X2/2 + o
(
X2
)
. Hence, by the substitution X = fn(x) −→

x→0
0:

fn+1(x) =
x→0

fn(x) + fn(x)2/2 + o
(
fn(x)2

)
=
x→0

αnx+ βnx
2 +

1

2
α2
nx

2 + o
(
x2
)

+ o
(
fn(x)2

)
.

Now o
(
fn(x)2

)
=
x→0

o(x2), hence

fn+1(x) =
x→0

αnx+

(
βn +

1

2
α2
n

)
x2 + o

(
x2
)
.

By identification, we conclude that {
αn+1 = αn

βn+1 = βn + α2
n/2.

4. Since α0 = 1, we conclude that all the αn’s are equal to 1, and hence

∀n ∈ N, βn+1 = βn +
1

2
,

where we recognize an arithmetic sequence. Since β0 = 0, we conclude that:

∀n ∈ N, βn =
n

2
.



5. Since:
fn+1(x)− fn(x) =

x→0

1

2
x2 + o

(
x2
)

and since the leading term x2/2 > 0, we conclude that the graph of fn+1 is above that of fn in a neighborhood
of 0.

6. From the coefficients of αn and βn obtained in the previous question we conclude:

∀n ∈ N, f ′n(0) = 1, f ′′n (0) = n.

Exercise 5.

1. We use:

cos(X) =
X→0

1− X2

2
+ o
(
X3
)

and

X = ln(1 + x) =
x→0

x− x2

2
+ o
(
x2
)
∼
x→0

x −→
x→0

0,

and substitute:

cos
(
ln(1 + x)

)
=
x→0

1− 1

2

(
x− x2

2
+ o
(
x2
))2

+ o
(
x3
)

=
x→0

1− 1

2

(
x2 − x3

)
+ o
(
x3
)

and we conclude:

cos
(
ln(1 + x)

)
− 1 + x2/2 =

x→0

x3

2
+ o
(
x3
)
∼
x→0

x3

2
.

Hence

lim
x→0

cos
(
ln(1 + x)

)
− 1 + x2/2

x3
=

1

2
.

2. We use:

sin(x) =
x→0

x− x3

6
+ o
(
x3
)

and

ln(1 + x) =
x→0

x− x2

2
+
x3

3
+ o
(
x3
)
,

and by a long division we obtain:

f(x) =
x→0

1 +
x

2
− x2

4
+ o
(
x2
)
.

From here we deduce:

• f possesses an extension by continuity at 0 since lim
x→0

f(x) = 1 ∈ R.

• Moreover, since f possesses a first order Taylor–Young expansion at 0, we conclude that f is differentiable
at 0, and we also read from its Taylor–Young expansion that an equation of its tangent line at 0 is:

∆ : y = 1 +
x

2
.

• From the second order term (which is negative in a neighborhood of 0), we conclude that the graph of
f lies below ∆ in a neighborhood of 0 (see Figure 4).

Exercise 6.

1. We set u(x) = x and v′(x) = ex so that u′(x) = 1 and v(x) = ex. Clearly u and v are of class C1 and hence,
by integration by parts: ∫ 1

0

xex dx =
[
xex
]x=1

x=0
−
∫ 1

0

ex dx

= e−
[
ex
]x=1

x=0

= e− (e− 1)

= 1.
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Figure 4 – Graph of function f of Exercise 5, as well as its tangent line at (0, 1) (dashed)

2. a) Since α 6= 1:

I(A) =

∫ 1

A

1

xα
dx =

[
− 1

(α− 1)xα−1

]x=1

x=A

= − 1

α− 1
+

1

(α− 1)Aα−1

b) Hence:

lim
A→0+

I(A) =


+∞ if α > 1

1

1− α
if α < 1


