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1. If f is of class C™ on [a,b] and N + 1 times differentiable on (a, b), there exists ¢ € (a, b) such that:
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(N +1)!

( _ )N+1_

N
f®(a)
fO) =) - b-a)* +
k=0
2. The function exp is of class C* on [0,1/2] and four times differentiable on (0,1/2) hence by the Taylor—

Lagrange formula, there exists ¢ € (0,1/2) such that
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exp(1/2) = Ve =1+ 1+ (;)+

Now,

and since exp is increasing and 0 < ¢ < 1/2,
0<e®<vVe<?2.

Hence
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3. From the value given, we deduce:

211
1.6484 < 22 1 6485
<18 <

and hence:
1.6484 < /e = e'/? < 1.6485 + 0.0005 = 1.649.

Since the right inequality is a strict inequality, we conclude that

Ve=1648...

Exercise 2.

1. The Mean Value Theorem is: let a,b € R with a # b, and let f : [a,b] — R such that f is continuous on [a, b]
and f is differentiable on (a,b). Then there exists ¢ € (a,b) such that f(b) — f(a) = f'(¢)(b — a).

It is seen as a special case of Cauchy’s Mean Value Theorem by taking g(z) = z, since in this case ¢'(x) = 1.

2. Since f and g are continuous on [a, b] and differentiable on (a, b), by elementary operations, h is also continuous
on [a,b] and differentiable on (a,b). Moreover,

h(a) = (9(b) — g(a)) f(a) = (f(b) — f(a))g(a) = g(b) f(a) — f(b)g(a)

and
h(d) = (9(b) — g(a)) f(b) = (f(b) — f(a))g(b) = —g(a)f(b) + f(a)g(b),

and we conclude that h(a) = h(b). Hence we can apply Rolle’s Theorem, and we conclude that there exists
¢ € (a,b) such that h'(c) = 0. The result follows from the fact that

h'(c) = (9(b) — g(a)) f'(c) = (£(b) = f(a))g'(c).



3. All the conditions of Cauchy’s Mean Value Theorem are fulfilled for the functions = and y on [0, 1]. Hence
there exists ¢y € (0,1) such that

(2(1) = 2(0))y'(to) = (y(1) — y(0))2' (to)-

R
The velocity of the particle at tg is @y, = (2/(t0),y'(to)) and the vector MoMy is (x(1) — (0),y(1) — y(0)).
By using the cross-product property to check whether these vectors are collinear, we find:

(x(1) = 2(0))y'(to) — (y(1) — y(0))2’(to) =0

. — ~ . .
i.e., MoM; and ¥;, are collinear. See Figure

—
Figure 3 — Trajectory of a particle: there exists a point where its velocity is collinear to MyM;.

Exercise 3.

1. For z € R%,
1n(ex + 33) = ln(ex(aje_m + 1)) =z +In(ze™ +1).

Now,
In(ze ™™ + 1) 0
€T r—~400 ’
hence In(ze ™ +1) = o(z), and we conclude that

r—r—+00

ln(em—i—x) ~ .

r— 400



2.

Let x € R*. Then:
(cosh(z))"" =exp (ln (cosh(z )> .

Now we know that cosh(x) - 1 and that In(X) XN — 1, hence
—1
22
n(cosh(z)) 3, cos (x) o3
Finally,
1 1 1
g2 nleosh@) 5,5 =9

and we conclude, by composition of limits, that

lim (cosh(m))l/m2 =el/2,

x—0

. Let z € (=1, 400). Then:

V1+a?—cos(x) =v1+22—-1+1-—cos(z).

We know that

z? x?
\/ 2.1 ~ ¥ _ ~ =
1+a2-1 i and 1 — cos(x) o T
Hence:
V1422 —cos(z) V1+22-1 1—-cos(z) 1 1
x2 x? x2 a0 2 2
hence
V1422 —cos(z) ~ 2°.

z—0

Exercise 4.

1.

By induction: the property is true for n = 0. Assume it is true for some n € N, then f,,11(0) = e 1 =
0
e’ —1=0.

By the Taylor—Young theorem, we only need to show that all the f,’s are twice differentiable at 0: we can
proceed by induction: fy is clearly twice differentiable at 0. Assume that f, is twice differentiable at 0 for
some n € N then, since f,,41 is obtained by composition the twice differentiable function exp and f,, we
conclude, by the Chain Rule, that f,, 41 is also twice differentiable at 0.

We know that eX — 1 o X + X?2/2+ o(X?). Hence, by the substitution X = f,(z) — 0:
—

z—0
Frn(e) =, Fal@) + 1?12+ o{fu(2)?)
T T Brnx? + ;anx +o(2?) + o fu(z)?).

Now o(fn(2)?) = o(x?), hence

1 2 2 2
frt1(2) W T T (5n + 2an> z® + o(z?).

By identification, we conclude that

Qpt1 = Op
Bn+1 = Bn + 047%/2

. Since ag = 1, we conclude that all the «,,’s are equal to 1, and hence

1
Vn € Na Bn-‘rl = ﬂn + ia
where we recognize an arithmetic sequence. Since 5y = 0, we conclude that:

Vn €N, 5,;%.



5. Since:

fr1(@) = fule) = %xr" +o(2?)

and since the leading term 22 /2 > 0, we conclude that the graph of £, is above that of f,, in a neighborhood
of 0.

6. From the coefficients of «,, and (3,, obtained in the previous question we conclude:
vn eN, f1(0)=1, f7(0) =n.

n

Exercise 5.

1. We use:
X2 3
cos(X) o 1- - +0(X?)
and )
X=I(l+z) = :vfx—+o(:c2) ~ x—0
z—0 2 =0 z—=0

and substitute:

z2 ?
cos(In(1 + z)) = 1- % (m iy + 0(;52)) + o(z?)

_ _1 2 .3 3
—01 2(;10 x)—i—o(m)

r—

and we conclude:

) 3 s 23
cos(ln(l + x)) —1+2%/2 o3 + o(x ) T
Hence
. cos(In(l42)) —14+22/2 1
im .
z—0 3 2
2. We use: 5
sin(z) = z— Ty o(z?)
x—0 6
and , ,
In(l1+2) = x—x——l—x——i—a(m?’),

x—0 2 3
and by a long division we obtain:

From here we deduce:
e f possesses an extension by continuity at 0 since lir% f(z)=1€eR.
r—r

e Moreover, since f possesses a first order Taylor—Young expansion at 0, we conclude that f is differentiable
at 0, and we also read from its Taylor—Young expansion that an equation of its tangent line at 0 is:

T
A:y=1+—.
Y +2

e From the second order term (which is negative in a neighborhood of 0), we conclude that the graph of
f lies below A in a neighborhood of 0 (see Figure [4]).

Exercise 6.

1. We set u(z) =z and v'(z) = e so that «/(z) = 1 and v(x) = €®. Clearly u and v are of class C! and hence,

by integration by parts:
1 1 1
/ ze® dz = [ze”] —/ e’ dz
0 0

e—[e]2,
=e—(e—1)

=1



Figure 4 — Graph of function f of Exercise |5} as well as its tangent line at (0,1) (dashed)

2. a) Since a # 1:

1 1
T oa-1 + (a —1)Ae—t
b) Hence:
+00 ifa>1
lim I(A) =
A—07t



