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Exercise 1.

1. Let € R}. Then z + 2% > 0, hence [z,2 4+ 2?] C R*, and the function ¢ — cos(t)/t? is continuous on
[z, 2 + 2%], hence () is well defined.

2. The function
f: Ry — R
; cos(t)
$2
is continuous on R, hence admits an antiderivative ' on R%. Then, by the Fundamental Theorem of
Calculus, for z € R7,

o(z) = F(z +2%) — F(x).

Since F is differentiable we conclude, by the Chain Rule (and Addition Rule) that ¢ is differentiable and
that:

Ve e RY, ¢/ (z) = (14 22)F (x4 2%) — F'(z)
= (1+2x)f(x+x2) — f(x)

3. Let x € R7.. The function cos is continuous on [a:, x+x2], and the function ¢ — 1/t? is (piecewise) continuous
and positive on [:E, T+ xﬂ hence, by MVT2, there exists ¢, € [x, T+ xQ] such that

z4a? dt
o) =eosier) [

t:z+m2
= cos(cz) {1]

t t=x

1 1
= COS(Cm) —m + ;

—x 4z + a2
= cos(Cz)———5—
z(x + x2?)
1
= cos(cy) T

4. Let v € RY.

e Since ¢, € [z,x + 2?], we conclude that ¢, — 0, hence lim cos(c;) = 1, hence lim ¢(z) = 1.
z—0t z—0t z—0t

e Moreover,

()] <

)

—
1+ 2 z—+400
hence lim ¢(z)=0.

T—+00

Exercise 2.
1. Let n € N. Then )
Inyi— I, = / et (t — 1) dt.
0
Now,
vt €[0,1], et"(t—1) <0

and the function ¢ — e*'¢™(t — 1) is continuous and not identically nil. Hence (since the endpoints of the
integral are in increasing order, i.e., 0 < 1) we conclude that I,,;1 — I, < 0, hence the sequence (I,)n>0 is
decreasing.



Since

vt € [0,1], e*t" >0
we conclude that I, > 0, hence the sequence (I,,)n>0 is bounded from below. Hence the sequence (I,)n>0 is
convergent.

2. Let n € N. Then, by an integration by parts (differentiating ¢t — e** and antidifferentiating ¢ — t"):

1
I, = / et dt
0

t’rLJrl t=1 1 t’rLJrl
= eati — / O[eati dt

e* «

= - —1
n+l n+1 et
e* —al,i

n+1

3. Let £ = lim I,. By Question 1 we know that ¢ exists in R. Then e* — al,y; —> €% — af hence, using
n—-+oo n—-+oo
the relation obtained in Question 2:
lim I, =0.

n—-+4oo

Since e* — al, — €% —af =e“ # 0 we conclude e* —al, ~ €%, hence
n——+oo n—-+oo

Exercise 3. With the given substitution:

° du= 2(3%, hence dt = 2v/tdu = 2(u — 1) du;

e whent=1,u=2;
e whent =da?, u=1++Va2 =1+ a since a > 0.
Then:

Iz/faz(u—ul)d“:/:ﬂ (2_1) du=2(1—|—a—2)—2(1n(1+a)—1n2):2(a—1)—21n<1;a>.

u

Exercise 4.
1. #=(1,X,X%),dimE = 3.
2. There are several ways to determine that % is a basis of F; later we need to determine some coordinates in

€, so we are going to show that the system associated with the coordinates in € possesses a unique solution:
let P=a+bX +cX? € E and let z,y,z € R. Then:

—r =b
P=xPy+yP+ 2P <— r+y+z=c
—y+tz=a

=0
y+z=b+c
—y+z—a

—
R2 <+ Ry + R1

+2z=a+b+c

1 1
y—b+c—z——fa+ b—}—fc
12 2
- b -

a+ +2

— { y+ z—b+c
R3 <+ R3 + R2

We obtain a unique solution, hence % is a basis of E.



P=Py—P,+P=X?>-X+2,

and

2

[Ple = | -1

1

4. From Question 2:

-1
[Ple = | 1/2
3/2

Exercise 5.

1. Let (z,y,2,t) € F. Then:

r+y+z2+t=0 z+y+ z+ t=0
204+y—2z—1t=0 Ry <« Ro — 2R, —y—32—-3t=0

r=—-y—z—1=2z+2t

(z,y,2,t) € F — {

=-3z—3t
< y

z=2z

t=t

— (z,y,2,t) = 2(2,-3,1,0) + t(2,-3,0,1).
Hence a basis of F is # = ((2,-3,1,0) + (2,—3,0,1)). We conclude that dim F = 2.

2. e We first check that F' and G are independent by checking that F NG = {0g}: let w € FNG. Since
w € G = Span{u, v}, there exists o, € R such that w = au + P, i.e.,

w:(a_ﬁ7a+ﬁaaaa+ﬁ)'
Since w € F', we must have:
(a=pB)+(a+p)+a+(a+3)=0
20a-p)+(@+B8)—a—(a=p)=0

that is,
da+ =0
a=0

hence a = =0, hence w = 0g. Hence F NG = {0g}, hence F' and G are independent.

e We now show that £ = F + G: since G = Span{u, v} and since u and v are not collinear, we conclude
that (u,v) is a basis of G and hence dim G = 2. Now, from Grassmann’s Formula (and using the fact
that F' and G are independent):

dim(F @ G) =dimF +dimG=2+2=4

We conclude by the Inclusion—Equality Theorem: since F @ G is a subspace of E and dim(F & G) =
4 = dim(F) < 400, we must have £ = F' & G.

Exercise 6. See lecture

Exercise 7.
1. a) Let (z,y,2) € R®. Then:

r+y+2=0
(z,y,2) € Ker f — 20 —y—2=0
—rz4+y+2=0



oo w

rz+ y+ z=0
—3y—3z=0

Rz(—RQ*QRl 2y+22_0

R3s < R3 + R1 {
r+y+z=0
— { y+z2=0
=0
Z=Zz

(z,y,2) -1,1).

Hence Ker f = Span{(O7 -1, 1)}7 and a basis of Ker f is ((0, -1, 1))
b) We know that a generating family of Im f is given by the image by f of a basis of R3. Hence:

Im f = Span{ f(1,0,0), f(0,1,0), f(0,0,1)} = Span{(1,2,—1),(1,-1,1),(1,—-1,1)} = Span{(1,2, 1), (1,

and since the two vectors that appear are not collinear, we conclude that a basis of Im f is:

((1,2,-1),(1,-1,1)).

. f is not injective, not surjective, not bijective.
. For a linear map f: E — F, dim E = rk f + dim Ker f.

. Here, dimR? = 3, rk f = dimIm f = 2 and dim Ker f = 1, hence dim R3rk f + dim Ker f.

a)

-1,1

)

)}



