Exercise 1.

1. Let $(x, y, z) \in E$. Then:

$$
(x, y, z) \in F \Longleftrightarrow(x, y, z)=y(-1,1,0)+z(-1,0,1)
$$

Hence a basis of F is

$$
((-1,1,0),(-1,0,1)) .
$$

Hence $\operatorname{dim} F=2$.
2. The spaces F and G are independent: let $u \in F \cap G$. Since $u \in G$, there exists $\lambda \in \mathbb{R}$ such that $u=$ $\lambda(1,-1,1)=(\lambda,-\lambda, \lambda)$, and since $u \in F$ we must have $\lambda-\lambda+\lambda=0$, i.e., $\lambda=0$. Hence $u=0_{E}$.
Moreover, $\operatorname{dim} G=1$, hence by Grassmann's formula (and since F and G are independent), $\operatorname{dim}(F+G)=$ $\operatorname{dim} F+\operatorname{dim} G=2+1=3$. Finally, we conclude that $E=F \oplus G$ by the Inclusion-Equality Theorem.
3. By the previous questions, we know that

$$
\mathscr{B}=((-1,1,0),(-1,0,1),(1,-1,1))
$$

is a basis of E. We now compute the coordinates of $u=(4,1,-3)$ in \mathscr{B} :

$$
[u]_{\mathscr{B}}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{r}
-x-y+z=4 \\
x-z=1 \\
y+z=-3
\end{array} \quad R_{2} \leftarrow R_{2}+R 1 \quad \Longleftrightarrow \begin{array}{r}
-x-y+z=4 \\
-y=5 \\
y+z=-3
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
x=-4-y+z=3 \\
z=-3-y=2 \\
y=-5
\end{array}\right.\right.
$$

So that

$$
\begin{aligned}
& u_{F}=3(-1,1,0)-5(-1,0,1)=(2,3,-5) \in F \\
& u_{G}=2(1,-1,1)=(2,-2,2) \in G,
\end{aligned}
$$

and $u=u_{F}+u_{G}$.

Exercise 2.

1. $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & -1\end{array}\right)$.
2. We compute the rank of $\left[\mathscr{C}_{E}\right]_{\mathscr{B}_{E}}$:

$$
\operatorname{rk} \mathscr{C}_{E}=\operatorname{rk}\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad C_{3} \leftarrow \overline{\bar{C}}_{3}-C_{1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
1 & 1 & 0
\end{array}\right)=3 \quad \text { last two columns are not collinear }
$$

\mathscr{C}_{E} is a family of 3 vectors of rank 3 , hence \mathscr{C}_{E} is independent; and since $\operatorname{dim} E=3, \mathscr{C}_{E}$ is also a generating family; hence \mathscr{C}_{E} is a basis of E.

To show that \mathscr{C}_{F} is a basis of F, we show that the system associated to the coordinates in \mathscr{C}_{F} possesses a unique solution:

$$
\left\{\begin{array} { c }
{ a - b = x } \\
{ 2 a + b = y }
\end{array} \quad R _ { 2 } \longleftarrow \stackrel { b = x } { \Longleftrightarrow R _ { 2 } - 2 R _ { 1 } } \Rightarrow \Longleftrightarrow \left\{\begin{array}{l}
a=x+b=x / 3+y / 3 \\
b=-2 x / 3+y / 3
\end{array}\right.\right.
$$

(Another method is to say that \mathscr{C}_{F} consists of two non-collinear vectors in a space of dimension 2 , but we'll need the solutions of the system later).
3. a)

$$
A^{\prime}=\left(\begin{array}{ccc}
5 / 3 & 2 / 3 & 1 / 3 \\
7 / 3 & -4 / 3 & -5 / 3
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
5 & 2 & 1 \\
7 & -4 & -5
\end{array}\right)
$$

since

$$
\begin{aligned}
f(1,2,1) & =(4,1), & \text { and } & {[(4,1)]_{\mathscr{C}_{F}} }
\end{aligned}=\binom{5 / 3}{7 / 3}
$$

b) The change of basis formula states:

$$
[f]_{\mathscr{C}_{E}, \mathscr{C}_{F}}=\left[\mathscr{C}_{F}\right]_{\mathscr{B}_{F}}^{-1}[f]_{\mathscr{B}_{E}, \mathscr{B}_{F}}\left[\mathscr{C}_{E}\right]_{\mathscr{B}_{E}}
$$

Now

$$
\left[\mathscr{C}_{E}\right]_{\mathscr{B}_{E}}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad\left[\mathscr{C}_{F}\right]_{\mathscr{B}_{F}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right)
$$

To compute $\left[\mathscr{C}_{E}\right]_{\mathscr{B}_{E}}^{-1}$ we need to solve the following system (which is the one we solved earlier):

$$
\left\{\begin{array} { r }
{ a - b = x } \\
{ 2 a + b = y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a=x+b=x / 3+y / 3 \\
b=-2 x / 3+y / 3
\end{array}\right.\right.
$$

hence

$$
\left[\mathscr{C}_{F}\right]_{\mathscr{B}_{F}}^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)
$$

Finally,

$$
A^{\prime}=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ccc}
4 & 2 & 2 \\
1 & 0 & -1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
5 & 2 & 1 \\
-7 & -4 & -5
\end{array}\right)
$$

Exercise 3. The characteristic polynomial of A is:

$$
\begin{array}{rlr}
\chi_{A}(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
6-\lambda & -4 & -3 \\
3 & -1-\lambda & -3 \\
4 & -4 & -1-\lambda
\end{array}\right) \\
C_{1} \leftarrow \overline{\bar{C}}_{1}+C_{2} & \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -4 & -3 \\
2-\lambda & -1-\lambda & -3 \\
0 & -4 & -1-\lambda
\end{array}\right) \\
& =\overline{\bar{R}}_{2}-R_{1} & \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -4 & -3 \\
0 & 3-\lambda & 0 \\
0 & -4 & -1-\lambda
\end{array}\right) \\
& =(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
3-\lambda & 0 \\
-4 & -1-\lambda
\end{array}\right) \\
& =(2-\lambda)(3-\lambda)(-1-\lambda) .
\end{array}
$$

Hence the eigenvalues of A are $-1,2$ and 3 , all of multiplicity 1 . We now determine the eigenspaces and eigenvectors:

- E_{-1} :

$$
\left\{\begin{array} { r l }
{ 7 x - 4 y - 3 z = 0 } \\
{ 3 x - 3 z } & { = 0 } \\
{ 4 x - 4 y = 0 } & { R _ { 1 } \leftarrow R _ { 1 } - R _ { 3 } } \\
{ R _ { 2 } \leftarrow R _ { 2 } / 3 }
\end{array} \quad \left\{\begin{array}{rr}
3 x-3 z=0 \\
x-z=0 \\
4 x-4 y=0
\end{array} \quad\right.\right. \text { (useless) }
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
z=x \\
y=x \\
x=x
\end{array} \Longleftrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right.
$$

Hence we choose

$$
X_{-1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- E_{2} :

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x-4 y-3 z=0 \\
3 x-3 y-3 z=0 \\
4 x-4 y-3 z=0
\end{array} \quad \text { (useless) } \quad \underset{R_{1}}{\Longleftrightarrow} \Longleftrightarrow R_{2} \quad \Longrightarrow \begin{array}{l}
3 x-3 y-3 z=0 \\
4 x-4 y-3 z=0
\end{array} \quad \underset{R_{2}}{\longleftrightarrow R_{2} / 3} \quad \Longleftrightarrow \begin{array}{r}
x-y-z=0 \\
4 x-4 y-3 z=0
\end{array}\right. \\
& \Longleftrightarrow R_{2} \leftarrow R_{2}-4 R_{1}\left\{\begin{aligned}
x-y-z & =0 \\
z & =0
\end{aligned}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=y \\
z=0 \\
y=y
\end{array} \Longleftrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .\right.
\end{aligned}
$$

Hence we choose

$$
X_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

- E_{3} :

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 3 x - 4 y - 3 z = 0 } \\
{ 3 x - 4 y - 3 z = 0 } \\
{ 4 x - 4 y - 4 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
3 x-4 y-3 z=0 \\
4 x-4 y-4 z=0
\end{array} \quad \Longleftrightarrow R_{2} \nLeftarrow R_{2}-R_{1} \quad\left\{\begin{array}{c}
3 x-4 y-3 z=0 \\
x-z=0
\end{array}\right.\right.\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=z \\
y=0 \\
z=z
\end{array} \quad \Longleftrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=z\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right. \text {. }
\end{aligned}
$$

Hence we choose

$$
X_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

We construct P and D as:

$$
P=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

and we have $D=P^{-1} A P$.

Exercise 4.

1.

$$
\begin{aligned}
& \chi_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & -2 & -5 \\
0 & 2-\lambda & 1 \\
1 & -1 & 1-\lambda
\end{array}\right) \\
& C_{1} \leftarrow \overline{\bar{C}}_{1}+C_{2} \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -2 & -5 \\
2-\lambda & 2-\lambda & 1 \\
0 & -1 & -1-\lambda
\end{array}\right) \\
& R_{2} \leftarrow \overline{\bar{R}}_{2}-R_{1}
\end{aligned} \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -2 & -5 \\
0 & 4-\lambda & 6 \\
0 & -1 & -1-\lambda
\end{array}\right) .
$$

$$
\begin{array}{ll}
= & (2-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & 6 \\
-1 & -1-\lambda
\end{array}\right) \\
= & (2-\lambda)((4-\lambda)(-1-\lambda)+6) \\
= & (2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=(2-\lambda)(\lambda-2)(\lambda-1) \\
= & -(\lambda-2)^{2}(\lambda-1) .
\end{array}
$$

Hence 1 is an eigenvalue of A of multiplicity 1 and 2 is an eigenvalue of A of multiplicity 2 .
2. The rank of $A-2 I_{3}$ is:

$$
\operatorname{rk}\left(A-2 I_{3}\right)=\operatorname{rk}\left(\begin{array}{ccc}
2 & -2 & -5 \\
0 & 0 & 1 \\
1 & -1 & -3
\end{array}\right)=2
$$

hence, by the Rank-Nullity Theorem, $\operatorname{dim} E_{2}=3-2=1 \neq$ multiplicity of 2 . Hence A is not diagonalizable.
3. \quad For u :

$$
A\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

hence $f(u)=u$; since $u \neq 0_{E}$, we conclude that u is an eigenvector of f associated to 1 .

- For v :

$$
A\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)=2\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

hence $f(v)=2 v$; since $v \neq 0_{E}$, we conclude that v is an eigenvector of f associated to 2 .
4. $P=\left(\begin{array}{ccc}1 & 1 & 3 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

We compute P^{-1} by solving the following linear system:

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ x + y + 3 z = a } \\
{ - x + y = b } \\
{ x + z } & { = c }
\end{array} \quad \begin{array} { c }
{ R _ { 2 } \leftarrow R _ { 2 } + R _ { 1 } } \\
{ R _ { 3 } \leftarrow R _ { 3 } - R _ { 1 } }
\end{array} \quad \Longleftrightarrow \quad \left\{\begin{array}{rl}
x+y+3 z=a \\
2 y+3 z=a+b \\
-y-2 z & =-a+c
\end{array}\right.\right. \\
& R_{2} \stackrel{R_{2}+2 R_{3}}{\Longleftrightarrow} \quad\left\{\begin{aligned}
x+y+3 z & =a \\
-z & =-a+b+2 c \\
-y-2 z & =-a+c
\end{aligned}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=a-y-3 z=-a+b+3 c \\
y=-2 z+a-c=-a+2 b+3 c \\
z=a-b-2 c
\end{array}\right.
\end{aligned}
$$

Hence

$$
P^{-1}=\left(\begin{array}{ccc}
-1 & 1 & 3 \\
-1 & 2 & 3 \\
1 & -1 & -2
\end{array}\right)
$$

5. We already know that $f(u)=u, f(v)=2 v$, hence the first two columns of T are correct. Moreover,

$$
A\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
7 \\
1 \\
2
\end{array}\right)
$$

hence $f(w)=(7,1,2)=2 w+v$. Hence the last column of T is also correct.
6. a) $N^{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\mathbf{0}$ hence, for all $k \geq 2, N^{k}=\mathbf{0}$.
b) To apply the Binomial Theorem to $D+N$ we need to check that D and N commute:

$$
D N=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad N D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

hence $D N=N D$, and we can apply the Binomial Theorem: for $n \geq 2$,

$$
\begin{aligned}
T^{n} & =(D+N)^{n}=\sum_{k=0}^{n}\binom{n}{k} D^{n-k} N^{k} \\
& =\binom{n}{0} D^{n}+\binom{n}{1} D^{n-1} N \quad \text { since for } k \geq 2, N^{k}=\mathbf{0} \\
& =D^{n}+n D^{n-1} N .
\end{aligned}
$$

Now,

$$
D^{n-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2^{n-1} & 0 \\
0 & 0 & 2^{n-1}
\end{array}\right) \quad \text { hence } D^{n-1} N=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2^{n-1} \\
0 & 0 & 0
\end{array}\right)
$$

Finally, we conclude that

$$
T^{n}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2^{n} & n 2^{n-1} \\
0 & 0 & 2^{n}
\end{array}\right)
$$

7. By the Change of Basis Formula, we know that $A=P T P^{-1}$, hence $A^{n}=P T^{n} P^{-1}$. Notice that we only need to compute the first column of A^{n} :

$$
\begin{aligned}
A^{n}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) & =P T^{n}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \\
& =P\left(\begin{array}{c}
-1 \\
-2^{n}+n 2^{n-1} \\
2^{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
-1-2^{n}+n 2^{n-1}+3 \cdot 2^{n} \\
1-2^{n}+n 2^{n-1} \\
-1+2^{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
-1+2^{n+1}+n 2^{n-1} \\
1-2^{n}+n 2^{n-1} \\
-1+2^{n}
\end{array}\right)
\end{aligned}
$$

Hence

$$
f^{n}(1,0,0)=\left(-1+2^{n+1}+n 2^{n-1}, 1-2^{n}+n 2^{n-1},-1+2^{n}\right)
$$

Exercise 5.

- If $A=\lambda_{0} I_{n}$, then A is already diagonal, hence A is diagonalizable.
- If A is diagonalizable, there exists an invertible matrix $P \in M_{n}(\mathbb{R})$ such that $A=P D P^{-1}$ where $D=\lambda_{0} I_{n}$. Hence $A=\lambda_{0} P I_{n} P^{-1}=\lambda_{0} P P^{-1}=\lambda_{0} I_{n}$.

Exercise 6. Let $\lambda_{0} \in \mathbb{K}$ be an eigenvalue of p. This means that

$$
E_{\lambda_{0}}=\operatorname{Ker}\left(p-\lambda_{0} \operatorname{id}_{E}\right) \neq\left\{0_{E}\right\}
$$

Let $x \in E_{\lambda_{0}}$ with $x \neq 0_{E}$. Then:

$$
p(x)=\lambda_{0} x
$$

and

$$
p^{2}(x)=p\left(\lambda_{0} x\right)=\lambda_{0} p(x)=\lambda_{0}^{2} x .
$$

Since $p^{2}=p$ we must have

$$
\lambda_{0}^{2} x=\lambda_{0} x
$$

Since $x \neq 0_{E}$, we must have $\lambda_{0}^{2}=\lambda_{0}$, hence $\lambda_{0} \in\{0,1\}$.

