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Exercise 1.

1. Let (x, y, z) ∈ E. Then:

(x, y, z) ∈ F ⇐⇒ (x, y, z) = y(−1, 1, 0) + z(−1, 0, 1).

Hence a basis of F is (
(−1, 1, 0), (−1, 0, 1)

)
.

Hence dimF = 2.

2. The spaces F and G are independent: let u ∈ F ∩ G. Since u ∈ G, there exists λ ∈ R such that u =
λ(1,−1, 1) = (λ,−λ, λ), and since u ∈ F we must have λ− λ+ λ = 0, i.e., λ = 0. Hence u = 0E .

Moreover, dimG = 1, hence by Grassmann’s formula (and since F and G are independent), dim(F +G) =
dimF + dimG = 2 + 1 = 3. Finally, we conclude that E = F ⊕G by the Inclusion–Equality Theorem.

3. By the previous questions, we know that

B =
(
(−1, 1, 0), (−1, 0, 1), (1,−1, 1)

)
is a basis of E. We now compute the coordinates of u = (4, 1,−3) in B:

[u]B =

xy
z

 ⇐⇒
−x− y+ z= 4

x − z= 1
y+ z=−3

⇐⇒
R2 ← R2 + R1

−x− y+ z= 4
− y = 5
y+ z=−3

⇐⇒


x = −4− y + z = 3

z = −3− y = 2

y = −5

So that

uF = 3(−1, 1, 0)− 5(−1, 0, 1) = (2, 3,−5) ∈ F
uG = 2(1,−1, 1) = (2,−2, 2) ∈ G,

and u = uF + uG.

Exercise 2.

1. A =

(
1 1 1
0 1 −1

)
.

2. We compute the rank of [CE ]BE
:

rk CE = rk

1 0 1
2 1 0
1 1 1

 =
C3 ← C3 − C1

1 0 0
2 1 −2
1 1 0

 = 3 last two columns are not collinear

CE is a family of 3 vectors of rank 3, hence CE is independent; and since dimE = 3, CE is also a generating
family; hence CE is a basis of E.

To show that CF is a basis of F , we show that the system associated to the coordinates in CF possesses a
unique solution:{

a− b=x
2a+ b= y

⇐⇒
R2 ← R2 − 2R1

{
a− b=x

3b=−2x+ y
⇐⇒

{
a = x+ b = x/3 + y/3

b = −2x/3 + y/3

(Another method is to say that CF consists of two non-collinear vectors in a space of dimension 2, but we’ll
need the solutions of the system later).



3. a)

A′ =

(
5/3 2/3 1/3
7/3 −4/3 −5/3

)
=

1

3

(
5 2 1
7 −4 −5

)
,

since

f(1, 2, 1) = (4, 1), and
[
(4, 1)

]
CF

=

(
5/3
7/3

)
f(0, 1, 1) = (2, 0), and

[
(2, 0)

]
CF

=

(
2/3
−4/3

)
f(1, 0, 1) = (2,−1), and

[
(2,−1)

]
CF

=

(
1/3
−5/3

)
.

b) The change of basis formula states:

[f ]CE ,CF
= [CF ]−1BF

[f ]BE ,BF
[CE ]BE

.

Now

[CE ]BE
=

1 0 1
2 1 0
1 1 1

 and [CF ]BF
=

(
1 −1
2 1

)
To compute [CE ]−1BE

we need to solve the following system (which is the one we solved earlier):{
a− b=x

2a+ b= y
⇐⇒

{
a = x+ b = x/3 + y/3

b = −2x/3 + y/3

hence
[CF ]−1BF

=
1

3

(
1 1
−2 1

)
.

Finally,

A′ =
1

3

(
1 1
−2 1

)(
1 1 1
0 1 −1

)1 0 1
2 1 0
1 1 1

 =
1

3

(
1 1
−2 1

)(
4 2 2
1 0 −1

)
=

1

3

(
5 2 1
−7 −4 −5

)

Exercise 3. The characteristic polynomial of A is:

χA(λ) = det

6− λ −4 −3
3 −1− λ −3
4 −4 −1− λ


=

C1 ← C1 + C2

det

2− λ −4 −3
2− λ −1− λ −3

0 −4 −1− λ


=

R2 ← R2 − R1

det

2− λ −4 −3
0 3− λ 0
0 −4 −1− λ


= (2− λ) det

(
3− λ 0
−4 −1− λ

)
= (2− λ)(3− λ)(−1− λ).

Hence the eigenvalues of A are −1, 2 and 3, all of multiplicity 1. We now determine the eigenspaces and
eigenvectors:

• E−1: 7x− 4y− 3z= 0
3x − 3z= 0
4x− 4y = 0

⇐⇒
R1 ← R1 − R3

R2 ← R2/3

3x − 3z= 0 (useless)
x − z= 0

4x− 4y = 0



⇐⇒


z = x

y = x

x = x

⇐⇒

xy
z

 = x

1
1
1

 .

Hence we choose

X−1 =

1
1
1

 .

• E2:4x− 4y− 3z= 0
3x− 3y− 3z= 0
4x− 4y− 3z= 0 (useless)

⇐⇒
R1 ↔ R2

{
3x− 3y− 3z= 0
4x− 4y− 3z= 0

⇐⇒
R2 ← R2/3

{
x− y− z= 0

4x− 4y− 3z= 0

⇐⇒ R2 ← R2 − 4R1

{
x− y− z= 0

z= 0

⇐⇒


x = y

z = 0

y = y

⇐⇒

xy
z

 = y

1
1
0

 .

Hence we choose

X2 =

1
1
0

 .

• E3: 3x− 4y− 3z= 0
3x− 4y− 3z= 0
4x− 4y− 4z= 0

⇐⇒
{

3x− 4y− 3z= 0
4x− 4y− 4z= 0

⇐⇒
R2 ← R2 − R1

{
3x− 4y− 3z= 0
x − z= 0

⇐⇒


x = z

y = 0

z = z

⇐⇒

xy
z

 = z

1
0
1

 .

Hence we choose

X3 =

1
0
1

 .

We construct P and D as:

P =

1 1 1
1 1 0
1 0 1

 and D =

−1 0 0
0 2 0
0 0 3

 .

and we have D = P−1AP .

Exercise 4.

1.

χA(λ) = det

4− λ −2 −5
0 2− λ 1
1 −1 1− λ


=

C1 ← C1 + C2

det

2− λ −2 −5
2− λ 2− λ 1

0 −1 −1− λ


=

R2 ← R2 − R1

det

2− λ −2 −5
0 4− λ 6
0 −1 −1− λ





= (2− λ) det

(
4− λ 6
−1 −1− λ

)
= (2− λ)

(
(4− λ)(−1− λ) + 6

)
= (2− λ)

(
λ2 − 3λ+ 2

)
= (2− λ)(λ− 2)(λ− 1)

= −(λ− 2)2(λ− 1).

Hence 1 is an eigenvalue of A of multiplicity 1 and 2 is an eigenvalue of A of multiplicity 2.

2. The rank of A− 2I3 is:

rk(A− 2I3) = rk

2 −2 −5
0 0 1
1 −1 −3

 = 2

hence, by the Rank–Nullity Theorem, dimE2 = 3− 2 = 1 6= multiplicity of 2. Hence A is not diagonalizable.

3. • For u:

A

 1
−1
1

 =

 1
−1
1


hence f(u) = u; since u 6= 0E , we conclude that u is an eigenvector of f associated to 1.

• For v:

A

1
1
0

 =

2
2
0

 = 2

1
1
0


hence f(v) = 2v; since v 6= 0E , we conclude that v is an eigenvector of f associated to 2.

4. P =

 1 1 3
−1 1 0
1 0 1

.

We compute P−1 by solving the following linear system: x+ y+ 3z= a
−x+ y = b
x + z= c

⇐⇒
R2 ← R2 + R1

R3 ← R3 − R1

x+ y+ 3z= a
2y+ 3z= a+ b
− y− 2z=−a+ c

⇐⇒
R2 ← R2 + 2R3

x+ y+ 3z= a
− z=−a+ b+ 2c

− y− 2z=−a+ c

⇐⇒


x = a− y − 3z = −a+ b+ 3c

y = −2z + a− c = −a+ 2b+ 3c

z = a− b− 2c

Hence

P−1 =

−1 1 3
−1 2 3
1 −1 −2

 .

5. We already know that f(u) = u, f(v) = 2v, hence the first two columns of T are correct. Moreover,

A

 3
0
−1

 =

7
1
2


hence f(w) = (7, 1, 2) = 2w + v. Hence the last column of T is also correct.

6. a) N2 =

0 0 0
0 0 0
0 0 0

 = 0 hence, for all k ≥ 2, Nk = 0.



b) To apply the Binomial Theorem to D +N we need to check that D and N commute:

DN =

0 0 0
0 0 2
0 0 0

 and ND =

0 0 0
0 0 2
0 0 0


hence DN = ND, and we can apply the Binomial Theorem: for n ≥ 2,

Tn = (D +N)n =

n∑
k=0

(
n

k

)
Dn−kNk

=

(
n

0

)
Dn +

(
n

1

)
Dn−1N since for k ≥ 2, Nk = 0

= Dn + nDn−1N.

Now,

Dn−1 =

1 0 0
0 2n−1 0
0 0 2n−1

 hence Dn−1N =

0 0 0
0 0 2n−1

0 0 0

 .

Finally, we conclude that

Tn =

1 0 0
0 2n n2n−1

0 0 2n

 .

7. By the Change of Basis Formula, we know that A = PTP−1, hence An = PTnP−1. Notice that we only
need to compute the first column of An:

An

1
0
0

 = PTn

−1
−1
1


= P

 −1
−2n + n2n−1

2n


=

−1− 2n + n2n−1 + 3 · 2n
1− 2n + n2n−1

−1 + 2n


=

−1 + 2n+1 + n2n−1

1− 2n + n2n−1

−1 + 2n

 .

Hence
fn(1, 0, 0) =

(
−1 + 2n+1 + n2n−1, 1− 2n + n2n−1,−1 + 2n

)
.

Exercise 5.

• If A = λ0In, then A is already diagonal, hence A is diagonalizable.

• If A is diagonalizable, there exists an invertible matrix P ∈Mn(R) such that A = PDP−1 where D = λ0In.
Hence A = λ0PInP

−1 = λ0PP
−1 = λ0In.

Exercise 6. Let λ0 ∈ K be an eigenvalue of p. This means that

Eλ0 = Ker(p− λ0 idE) 6= {0E}.

Let x ∈ Eλ0
with x 6= 0E . Then:

p(x) = λ0x

and
p2(x) = p(λ0x) = λ0p(x) = λ20x.

Since p2 = p we must have
λ20x = λ0x.

Since x 6= 0E , we must have λ20 = λ0, hence λ0 ∈ {0, 1}.


