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1. Let n € N*. Then, for k € {1,...,n}:
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2. Let n>2and k € {2,...,n}. Then:
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Exercise 2. Let x € R. Then:

4sin(z) cos®(z) — 3sin(z) = sin(z) (4 cos®(z) — 3)
= 4sin(z)(cos?(z) — 3/4)
= 4sin(z) (cos*(z) — 3/4)

Hence:

>

4sin(x) cos?(z) — 3sin(z) =0 <= sin(z) = 0 or cos(z) = 73 or cos(x) = —

= sin(z) = 0 or cos(z) = cos (%) or cos(z) = cos (i:)
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Exercise 3.
1. Let x € R. Then:
The expression —f(1 — 2z) is well defined <= 1— 2z € [0, 1]
<— 0<1-2x<1

— —-1<-2x<0
— 0<2x<1
<—

0<z<

N | =

Hence D = [0,1/2].

2. We can define the following intermediate functions:

fi: [0,1] — R fo: [0,1] — R

xz +— f(—x), z +— filx—1)=f(1 -z,
fz: [0,1/2] — R g: [0,1/2] — R

x> fo(2z) = f(1 - 22), x  — —fa(x) = —f(1—2x).

The graph of g is obtained from that of f by performing the following operations (in this order):

e flip the graph of f about the y-axis to obtain the graph of fi,

e shift the graph of f; to the right by 1 unit to obtain the graph of fs,

e squeeze the graph of fs horizontally by a factor of 2 to obtain the graph of fs,
e flip the graph of f3 about the z-axis to obtain the graph of g.

3. See Figure[l]

Exercise 4.

1. a) Let z € R*. Then:

()_(2334—1)2 1_4$2+4$+1 4733_4332—1—1
T 4 162 16z 16z

We notice that p is the quotient of an even and an odd function, hence p is odd. More precisely: for x € R*,

A(=2)*+1)  4a® 41
16(—z) 16z

p(=z) = —p(@).

b) i) Let z,y € [1/2,400) such that z < y. Since 1/2 < x < y we conclude that zy > 1/4 i.e., dzy — 1 > 0,

and that £ —y < 0, hence

@) - s(g) = B =Y

hence f(z) < f(y). This shows that f is increasing on [1/2,400).
Let x,y € (0,1/2] such that z < y. Since 0 < x < y < 1/2 we conclude that zy < 1/4 i.e., dzy—1< 1,
and that £ —y < 0, and that xy > 0, hence

<0,

(4ry — 1) (= —y)

0
162y -0

fl@) = fly) =
hence f(z) > f(y). This shows that f is decreasing on (0,1/2].
ii) Since p = f + 1/4, the functions p and f have the same variations. We know that f (hence p) is:
e increasing on [1/2,4+00),
e decreasing on (0,1/2].



Figure 1 — Graph of f (above) and g (below) of Exercise
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Figure 2 — Graph of function f of Exercise



Since p is odd, we conclude that p (hence f) is:
e increasing on (—oo,—1/2],
o decreasing on [—1/2,0).
c¢) See Figure
d)

A=1[1/2,+), B
1 1 i
pos g 1) p={ Nom,
2. a) We know that f is increasing on [1/2, 4+00), hence

1 1 1
this show that g is well-defined. We also know that f is increasing on [1/2,400), hence g is increasing,
hence g is injective.
b) Let x € [1/2,400), y € [1/2,400). Then:

B (2x+1)%
9@) =y = T =y
— (224 1) = 16y

= 42® + 4z +1 =162y
1
= :172+:17+Z:4a:y

1
= z2+(1—4y)x+1:0

We recognize a quadratic, the discriminant of which is
A= (1—-4y)*—1=16y" —8y =8y(2y — 1) >0,

and the solutions are: VA
dy -1+ VA 1
— = 2y — 3 +/2y(2y — 1).

We now show that there’s exactly one solution x € [1/2, +00):
e if y =1/2 then A = 0, the quadratic possesses a unique solution which is 1/2;
e if y > 1/2 then 2y —1/2 > 1/2, and so 2y — 1/2+ /2y(2y — 1) € (1/2,+0c0). Since g is injective, the
other solution of the quadratic can’t be in [1/2, +00). We can check that explicitly too:

ooy (2y—1/2—/2y(2y —1))(2y —1/2 4+ /2y(2y — 1))
2= 1/2= V22— 1) = 2 —1/2+ /2y(2y — 1)
_ (2y—1/2)? —2y(2y — 1)
2y —1/2+/2y(2y — 1)
1/4

T2y 12+ 22 - 1)

and since the denominator is greater that 1/2, we have

2y —1/2 —/2y(2y — 1) < 1/2.

Finally, we have proved that:
gx)=y <= z=2y—1/2—/2y(2y — 1) < 1/2.
We hence conclude that g is a bijection and that:

g~' [1/2,+00) — [1/2,400)

Yy — 2y —1/2—/2y(2y — 1).



3. a) The sequence (uy,)nen is well defined since

e ug belongs to the domain of g (so that u; can be computed)
e the domain and codomain of g are equal (hence we can compute u,+1 from u,,).
b) Since g is increasing, the sequence (uy,),en is monotone, and its variations depend on its first terms. Now,

(2up +1)2 _ duftdug+1

e T 160

_ —12uf+4ug+1  (6ug +1)(2up — 1)

= <0,
Ho 160 16u0

hence u; < ug, hence the sequence (u,)nen is decreasing.

Exercise 5. Since f is a polynomial with real coefficients, we know that if 1 + 2¢ is a root of f of multiplicity
at least 2 if and only if 1 — 2¢ is a root of multiplicity at least 2, if and only if f(z) can be factored by

g(x) = (x —1—20)%(x — 1 +2i)> = (2® — 224 5)? = 2* — 42 4 142 — 20z + 25.
After a long division (only 2 steps) we find:
f(z) = 2z —1)g(x),

which shows that 1 + 2¢ and 1 — 2¢ are roots of f of multiplicity exactly 2.
The factored form of f in C and R are:

fz) =2 <x - ;) (x —1—2i)*(x — 14 2i)? (in C)
f(z) = (a: — ;) (2® — 22 +5)° (in R)

Finally, the roots of f and their multiplicity are:
e 1+ 2¢ of multiplicity 2;
e 1 — 2¢ of multiplicity 2;

e 1/2 of multiplicity 1.



