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Exercise 1.

1. Let n ∈ N∗. Then, for k ∈ {1, . . . , n}:

n2 + k2 > n2

hence
√
n2 + k2 > n > 0

hence
1√

n2 + k2
<

1

n

and hence:
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1√
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<
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1

n
= n

1

n
= 1.

2. Let n ≥ 2 and k ∈ {2, . . . , n}. Then:
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(
n

k

)
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n!
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=
n!
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(
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)
!
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(
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)

Hence
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k=2
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(
n

k

)
=

n∑
k=2

n(n− 1)

(
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)
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(
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(
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)
1n−2−(k−2)1k−2

= n(n− 1)2n−2 by the Binomial Theorem

Exercise 2. Let x ∈ R. Then:

4 sin(x) cos2(x)− 3 sin(x) = sin(x)
(
4 cos2(x)− 3

)
= 4 sin(x)

(
cos2(x)− 3/4

)
= 4 sin(x)

(
cos2(x)− 3/4

)
Hence:

4 sin(x) cos2(x)− 3 sin(x) = 0 ⇐⇒ sin(x) = 0 or cos(x) =

√
3

2
or cos(x) = −

√
3

2

⇐⇒ sin(x) = 0 or cos(x) = cos
(π

6

)
or cos(x) = cos

(
5π

6

)



⇐⇒ x ∈ {0, π} or x ∈
{
−π

6
,
π

6
,

11π

6

}
or x ∈

{
−5π

6
,

5π

6
,

7π

6

}
⇐⇒ x ∈

{
−5π

6
,−π

6
, 0,

π

6
,

5π

6
, π,

7π

6
,

11π

6

}
.

Exercise 3.

1. Let x ∈ R. Then:

The expression −f(1− 2x) is well defined ⇐⇒ 1− 2x ∈ [0, 1]

⇐⇒ 0 ≤ 1− 2x ≤ 1

⇐⇒ −1 ≤ −2x ≤ 0

⇐⇒ 0 ≤ 2x ≤ 1

⇐⇒ 0 ≤ x ≤ 1

2
.

Hence D = [0, 1/2].

2. We can define the following intermediate functions:

f1 : [0, 1] −→ R
x 7−→ f(−x),

f2 : [0, 1] −→ R
x 7−→ f1(x− 1) = f(1− x),

f3 : [0, 1/2] −→ R
x 7−→ f2(2x) = f(1− 2x),

g : [0, 1/2] −→ R
x 7−→ −f3(x) = −f(1− 2x).

The graph of g is obtained from that of f by performing the following operations (in this order):

• flip the graph of f about the y-axis to obtain the graph of f1,

• shift the graph of f1 to the right by 1 unit to obtain the graph of f2,

• squeeze the graph of f2 horizontally by a factor of 2 to obtain the graph of f3,

• flip the graph of f3 about the x-axis to obtain the graph of g.

3. See Figure 1.

Exercise 4.

1. a) Let x ∈ R∗. Then:

p(x) =
(2x+ 1)2

16x
− 1

4
=

4x2 + 4x+ 1

16x
− 4x

16x
=

4x2 + 1

16x
.

We notice that p is the quotient of an even and an odd function, hence p is odd. More precisely: for x ∈ R∗,

p(−x) =
4(−x)2 + 1)

16(−x)
= −4x2 + 1

16x
= −p(x).

b) i) Let x, y ∈ [1/2,+∞) such that x < y. Since 1/2 ≤ x < y we conclude that xy > 1/4 i.e., 4xy− 1 > 0,
and that x− y < 0, hence

f(x)− f(y) =
(4xy − 1)(x− y)

16xy
< 0,

hence f(x) < f(y). This shows that f is increasing on [1/2,+∞).
Let x, y ∈ (0, 1/2] such that x < y. Since 0 < x < y ≤ 1/2 we conclude that xy < 1/4 i.e., 4xy−1 < 1,
and that x− y < 0, and that xy > 0, hence

f(x)− f(y) =
(4xy − 1)(x− y)

16xy
> 0,

hence f(x) > f(y). This shows that f is decreasing on (0, 1/2].
ii) Since p = f + 1/4, the functions p and f have the same variations. We know that f (hence p) is:

• increasing on [1/2,+∞),
• decreasing on (0, 1/2].
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Figure 1 – Graph of f (above) and g (below) of Exercise 3.
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Figure 2 – Graph of function f of Exercise 4.



Since p is odd, we conclude that p (hence f) is:
• increasing on (−∞,−1/2],
• decreasing on [−1/2, 0).

c) See Figure 2.
d)

A = [1/2,+∞), B = (−∞, 0] ∪ (1/2,+∞), C = R−,

D = ∅, E =

{
−1

2

}
, F =

{
−1

2

}
∪ R∗+.

2. a) We know that f is increasing on [1/2,+∞), hence

∀x ∈
[

1

2
,+∞

)
, f(x) ≥ f

(
1

2

)
=

1

2
,

this show that g is well-defined. We also know that f is increasing on [1/2,+∞), hence g is increasing,
hence g is injective.

b) Let x ∈ [1/2,+∞), y ∈ [1/2,+∞). Then:

g(x) = y ⇐⇒ (2x+ 1)2

16x
= y

⇐⇒ (2x+ 1)2 = 16xy

⇐⇒ 4x2 + 4x+ 1 = 16xy

⇐⇒ x2 + x+
1

4
= 4xy

⇐⇒ x2 + (1− 4y)x+
1

4
= 0

We recognize a quadratic, the discriminant of which is

∆ = (1− 4y)2 − 1 = 16y2 − 8y = 8y(2y − 1) ≥ 0,

and the solutions are:
4y − 1±

√
∆

2
= 2y − 1

2
±
√

2y(2y − 1).

We now show that there’s exactly one solution x ∈ [1/2,+∞):
• if y = 1/2 then ∆ = 0, the quadratic possesses a unique solution which is 1/2;
• if y > 1/2 then 2y − 1/2 > 1/2, and so 2y − 1/2 +

√
2y(2y − 1) ∈ (1/2,+∞). Since g is injective, the

other solution of the quadratic can’t be in [1/2,+∞). We can check that explicitly too:

2y − 1/2−
√

2y(2y − 1) =
(2y − 1/2−

√
2y(2y − 1))(2y − 1/2 +

√
2y(2y − 1))

2y − 1/2 +
√

2y(2y − 1)

=
(2y − 1/2)2 − 2y(2y − 1)

2y − 1/2 +
√

2y(2y − 1)

=
1/4

2y − 1/2 +
√

2y(2y − 1)

and since the denominator is greater that 1/2, we have

2y − 1/2−
√

2y(2y − 1) < 1/2.

Finally, we have proved that:

g(x) = y ⇐⇒ x = 2y − 1/2−
√

2y(2y − 1) < 1/2.

We hence conclude that g is a bijection and that:

g−1 : [1/2,+∞) −→ [1/2,+∞)

y 7−→ 2y − 1/2−
√

2y(2y − 1).



3. a) The sequence (un)n∈N is well defined since

• u0 belongs to the domain of g (so that u1 can be computed)
• the domain and codomain of g are equal (hence we can compute un+1 from un).

b) Since g is increasing, the sequence (un)n∈N is monotone, and its variations depend on its first terms. Now,

u1 − u0 =
(2u0 + 1)2

16u0
− u0 =

4u20 + 4u0 + 1

16u0
− u0 =

−12u20 + 4u0 + 1

16u0
= − (6u0 + 1)(2u0 − 1)

16u0
< 0,

hence u1 < u0, hence the sequence (un)n∈N is decreasing.

Exercise 5. Since f is a polynomial with real coefficients, we know that if 1 + 2i is a root of f of multiplicity
at least 2 if and only if 1− 2i is a root of multiplicity at least 2, if and only if f(x) can be factored by

g(x) = (x− 1− 2i)2(x− 1 + 2i)2 = (x2 − 2x+ 5)2 = x4 − 4x3 + 14x2 − 20x+ 25.

After a long division (only 2 steps) we find:

f(x) = (2x− 1)g(x),

which shows that 1 + 2i and 1− 2i are roots of f of multiplicity exactly 2.
The factored form of f in C and R are:

f(x) = 2

(
x− 1

2

)
(x− 1− 2i)2(x− 1 + 2i)2 (in C)

f(x) = 2

(
x− 1

2

)(
x2 − 2x+ 5)2 (in R)

Finally, the roots of f and their multiplicity are:

• 1 + 2i of multiplicity 2;

• 1− 2i of multiplicity 2;

• 1/2 of multiplicity 1.


