Exercise 1.

1. Let $n \in \mathbb{N}^{*}$. Then, for $k \in\{1, \ldots, n\}$:

$$
\begin{array}{ll}
& n^{2}+k^{2}>n^{2} \\
\text { hence } & \sqrt{n^{2}+k^{2}}>n>0 \\
\text { hence } & \frac{1}{\sqrt{n^{2}+k^{2}}}<\frac{1}{n}
\end{array}
$$

and hence:

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k^{2}}}<\sum_{k=1}^{n} \frac{1}{n}=n \frac{1}{n}=1 .
$$

2. Let $n \geq 2$ and $k \in\{2, \ldots, n\}$. Then:

$$
\begin{aligned}
k(k-1)\binom{n}{k} & =k(k-1) \frac{n!}{k!(n-k)!} \\
& =\frac{n!}{(k-2)!(n-k)!} \\
& =\frac{n!}{(k-2)!(n-2-(k-2))!} \\
& =n(n-1) \frac{(n-2)!}{(k-2)!(n-2-(k-2))!} \\
& =n(n-1)\binom{n-2}{k-2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{k=2}^{n} k(k-1)\binom{n}{k} & =\sum_{k=2}^{n} n(n-1)\binom{n-2}{k-2} \\
& =n(n-1) \sum_{k=0}^{n-2}\binom{n-2}{k-2} \\
& =n(n-1) \sum_{k=0}^{n-2}\binom{n-2}{k-2} 1^{n-2-(k-2)} 1^{k-2} \\
& =n(n-1) 2^{n-2} \quad \text { by the Binomial Theorem }
\end{aligned}
$$

Exercise 2. Let $x \in \mathbb{R}$. Then:

$$
\begin{aligned}
4 \sin (x) \cos ^{2}(x)-3 \sin (x) & =\sin (x)\left(4 \cos ^{2}(x)-3\right) \\
& =4 \sin (x)\left(\cos ^{2}(x)-3 / 4\right) \\
& =4 \sin (x)\left(\cos ^{2}(x)-3 / 4\right)
\end{aligned}
$$

Hence:

$$
\begin{aligned}
4 \sin (x) \cos ^{2}(x)-3 \sin (x)=0 & \Longleftrightarrow \sin (x)=0 \text { or } \cos (x)=\frac{\sqrt{3}}{2} \text { or } \cos (x)=-\frac{\sqrt{3}}{2} \\
& \Longleftrightarrow \sin (x)=0 \text { or } \cos (x)=\cos \left(\frac{\pi}{6}\right) \text { or } \cos (x)=\cos \left(\frac{5 \pi}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow x \in\{0, \pi\} \text { or } x \in\left\{-\frac{\pi}{6}, \frac{\pi}{6}, \frac{11 \pi}{6}\right\} \text { or } x \in\left\{-\frac{5 \pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}\right\} \\
& \Longleftrightarrow x \in\left\{-\frac{5 \pi}{6},-\frac{\pi}{6}, 0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}\right\} .
\end{aligned}
$$

Exercise 3.

1. Let $x \in \mathbb{R}$. Then:

$$
\begin{aligned}
\text { The expression }-f(1-2 x) \text { is well defined } & \Longleftrightarrow 1-2 x \in[0,1] \\
& \Longleftrightarrow 0 \leq 1-2 x \leq 1 \\
& \Longleftrightarrow-1 \leq-2 x \leq 0 \\
& \Longleftrightarrow 0 \leq 2 x \leq 1 \\
& \Longleftrightarrow 0 \leq x \leq \frac{1}{2} .
\end{aligned}
$$

Hence $D=[0,1 / 2]$.
2. We can define the following intermediate functions:

$$
\begin{aligned}
f_{1}:[0,1] & \longrightarrow \mathbb{R} & f_{2}:[0,1] & \longrightarrow \\
x & \longmapsto f(-x), & & \longmapsto f_{1}(x-1)=f(1-x) \\
f_{3}:[0,1 / 2] & \longrightarrow f_{2}(2 x)=f(1-2 x), & g:[0,1 / 2] & \longrightarrow \\
x & \longmapsto & x & \longmapsto-f_{3}(x)=-f(1-2 x) .
\end{aligned}
$$

The graph of g is obtained from that of f by performing the following operations (in this order):

- flip the graph of f about the y-axis to obtain the graph of f_{1},
- shift the graph of f_{1} to the right by 1 unit to obtain the graph of f_{2},
- squeeze the graph of f_{2} horizontally by a factor of 2 to obtain the graph of f_{3},
- flip the graph of f_{3} about the x-axis to obtain the graph of g.

3. See Figure 1.

Exercise 4.

1. a) Let $x \in \mathbb{R}^{*}$. Then:

$$
p(x)=\frac{(2 x+1)^{2}}{16 x}-\frac{1}{4}=\frac{4 x^{2}+4 x+1}{16 x}-\frac{4 x}{16 x}=\frac{4 x^{2}+1}{16 x} .
$$

We notice that p is the quotient of an even and an odd function, hence p is odd. More precisely: for $x \in \mathbb{R}^{*}$,

$$
p(-x)=\frac{\left.4(-x)^{2}+1\right)}{16(-x)}=-\frac{4 x^{2}+1}{16 x}=-p(x)
$$

b) i) Let $x, y \in[1 / 2,+\infty)$ such that $x<y$. Since $1 / 2 \leq x<y$ we conclude that $x y>1 / 4$ i.e., $4 x y-1>0$, and that $x-y<0$, hence

$$
f(x)-f(y)=\frac{(4 x y-1)(x-y)}{16 x y}<0
$$

hence $f(x)<f(y)$. This shows that f is increasing on $[1 / 2,+\infty)$.
Let $x, y \in(0,1 / 2]$ such that $x<y$. Since $0<x<y \leq 1 / 2$ we conclude that $x y<1 / 4$ i.e., $4 x y-1<1$, and that $x-y<0$, and that $x y>0$, hence

$$
f(x)-f(y)=\frac{(4 x y-1)(x-y)}{16 x y}>0
$$

hence $f(x)>f(y)$. This shows that f is decreasing on $(0,1 / 2]$.
ii) Since $p=f+1 / 4$, the functions p and f have the same variations. We know that f (hence p) is:

- increasing on $[1 / 2,+\infty)$,
- decreasing on $(0,1 / 2]$.

Figure 1 - Graph of f (above) and g (below) of Exercise 3 .

Figure 2 - Graph of function f of Exercise 4

Since p is odd, we conclude that p (hence f) is:

- increasing on $(-\infty,-1 / 2]$,
- decreasing on $[-1 / 2,0)$.
c) See Figure 2 .
d)

$$
\begin{array}{lll}
A=[1 / 2,+\infty), & B=(-\infty, 0] \cup(1 / 2,+\infty), & C=\mathbb{R}_{-} \\
D=\emptyset, & E=\left\{-\frac{1}{2}\right\}, & F=\left\{-\frac{1}{2}\right\} \cup \mathbb{R}_{+}^{*}
\end{array}
$$

2. a) We know that f is increasing on $[1 / 2,+\infty)$, hence

$$
\forall x \in\left[\frac{1}{2},+\infty\right), f(x) \geq f\left(\frac{1}{2}\right)=\frac{1}{2}
$$

this show that g is well-defined. We also know that f is increasing on $[1 / 2,+\infty)$, hence g is increasing, hence g is injective.
b) Let $x \in[1 / 2,+\infty), y \in[1 / 2,+\infty)$. Then:

$$
\begin{aligned}
g(x)=y & \Longleftrightarrow \frac{(2 x+1)^{2}}{16 x}=y \\
& \Longleftrightarrow(2 x+1)^{2}=16 x y \\
& \Longleftrightarrow 4 x^{2}+4 x+1=16 x y \\
& \Longleftrightarrow x^{2}+x+\frac{1}{4}=4 x y \\
& \Longleftrightarrow x^{2}+(1-4 y) x+\frac{1}{4}=0
\end{aligned}
$$

We recognize a quadratic, the discriminant of which is

$$
\Delta=(1-4 y)^{2}-1=16 y^{2}-8 y=8 y(2 y-1) \geq 0
$$

and the solutions are:

$$
\frac{4 y-1 \pm \sqrt{\Delta}}{2}=2 y-\frac{1}{2} \pm \sqrt{2 y(2 y-1)}
$$

We now show that there's exactly one solution $x \in[1 / 2,+\infty)$:

- if $y=1 / 2$ then $\Delta=0$, the quadratic possesses a unique solution which is $1 / 2$;
- if $y>1 / 2$ then $2 y-1 / 2>1 / 2$, and so $2 y-1 / 2+\sqrt{2 y(2 y-1)} \in(1 / 2,+\infty)$. Since g is injective, the other solution of the quadratic can't be in $[1 / 2,+\infty)$. We can check that explicitly too:

$$
\begin{aligned}
2 y-1 / 2-\sqrt{2 y(2 y-1)} & =\frac{(2 y-1 / 2-\sqrt{2 y(2 y-1)})(2 y-1 / 2+\sqrt{2 y(2 y-1)})}{2 y-1 / 2+\sqrt{2 y(2 y-1)}} \\
& =\frac{(2 y-1 / 2)^{2}-2 y(2 y-1)}{2 y-1 / 2+\sqrt{2 y(2 y-1)}} \\
& =\frac{1 / 4}{2 y-1 / 2+\sqrt{2 y(2 y-1)}}
\end{aligned}
$$

and since the denominator is greater that $1 / 2$, we have

$$
2 y-1 / 2-\sqrt{2 y(2 y-1)}<1 / 2
$$

Finally, we have proved that:

$$
g(x)=y \Longleftrightarrow x=2 y-1 / 2-\sqrt{2 y(2 y-1)}<1 / 2
$$

We hence conclude that g is a bijection and that:

$$
\begin{aligned}
g^{-1}:[1 / 2,+\infty) & \longrightarrow \\
y & \longmapsto 2 y-1 / 2-\sqrt{2 y(2 y-1)}
\end{aligned}
$$

3. a) The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is well defined since

- u_{0} belongs to the domain of g (so that u_{1} can be computed)
- the domain and codomain of g are equal (hence we can compute u_{n+1} from u_{n}).
b) Since g is increasing, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is monotone, and its variations depend on its first terms. Now,

$$
u_{1}-u_{0}=\frac{\left(2 u_{0}+1\right)^{2}}{16 u_{0}}-u_{0}=\frac{4 u_{0}^{2}+4 u_{0}+1}{16 u_{0}}-u_{0}=\frac{-12 u_{0}^{2}+4 u_{0}+1}{16 u_{0}}=-\frac{\left(6 u_{0}+1\right)\left(2 u_{0}-1\right)}{16 u_{0}}<0
$$

hence $u_{1}<u_{0}$, hence the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is decreasing.
Exercise 5. Since f is a polynomial with real coefficients, we know that if $1+2 i$ is a root of f of multiplicity at least 2 if and only if $1-2 i$ is a root of multiplicity at least 2 , if and only if $f(x)$ can be factored by

$$
g(x)=(x-1-2 i)^{2}(x-1+2 i)^{2}=\left(x^{2}-2 x+5\right)^{2}=x^{4}-4 x^{3}+14 x^{2}-20 x+25 .
$$

After a long division (only 2 steps) we find:

$$
f(x)=(2 x-1) g(x),
$$

which shows that $1+2 i$ and $1-2 i$ are roots of f of multiplicity exactly 2 .
The factored form of f in \mathbb{C} and \mathbb{R} are:

$$
\begin{align*}
& f(x)=2\left(x-\frac{1}{2}\right)(x-1-2 i)^{2}(x-1+2 i)^{2} \\
& f(x)=2\left(x-\frac{1}{2}\right)\left(x^{2}-2 x+5\right)^{2} \tag{R}
\end{align*}
$$

Finally, the roots of f and their multiplicity are:

- $1+2 i$ of multiplicity 2 ;
- $1-2 i$ of multiplicity 2 ;
- $1 / 2$ of multiplicity 1 .

