Exercise 1.

1. Let $x \in \mathbb{R}$. Then

$$
A \text { is well-defined } \Longleftrightarrow x^{2}-1>0 \Longleftrightarrow x^{2}>1 \Longleftrightarrow x \in(-\infty,-1) \cup(1,+\infty)
$$

Hence $D=(-\infty,-1) \cup(1,+\infty)$.
2. f is even: D is symmetric with respect to the origin, and for $x \in D$ one has:

$$
f(-x)=\cosh \left(\ln \left((-x)^{2}-1\right)\right)=\cosh \left(\ln \left(\left(x^{2}-1\right)\right)=f(x) .\right.
$$

3. Since cosh $\geq 1, f$ is bounded from below and 1 is a lower bound of f.

Moreover, $f(\sqrt{2})=\cosh (\ln (1))=\cosh (0)=1$, and we conclude that $\inf f=1$.
Since $f(\sqrt{2})=1=\inf f$, we conclude that $\min f$ exists and $\min f=1$.
We now determine the values of $x \in D$ such that $f(x)=1$: let $x \in D$. Then:

$$
f(x)=1 \Longleftrightarrow \cosh \left(\ln \left(x^{2}-1\right)\right) \Longleftrightarrow \ln \left(x^{2}-1\right)=0 \Longleftrightarrow x^{2}-1=1 \Longleftrightarrow x^{2}=2 \Longleftrightarrow x= \pm \sqrt{2}
$$

4. f is:

- decreasing on $(1, \sqrt{2}]$: let $x, y \in(1, \sqrt{2}]$ such that $x<y$. Then:

$$
\begin{aligned}
1<x<y \leq \sqrt{2} & \Longrightarrow 1<x^{2}<y^{2} \leq 2 \quad \text { since the square function is increasing on } \mathbb{R}_{+} \\
& \Longrightarrow 0<x^{2}-1<y^{2}-1 \leq 1 \\
& \Longrightarrow \ln \left(x^{2}-1\right)<\ln \left(y^{2}-1\right) \leq 0 \quad \text { since } \ln \text { is increasing } \\
& \Longrightarrow \cosh \left(\ln \left(x^{2}-1\right)\right\rangle \cosh \left(\ln \left(y^{2}-1\right)\right) \quad \text { since } \cosh \text { is decreasing on } \mathbb{R}_{-}
\end{aligned}
$$

hence $f(x)>f(y)$, hence f is decreasing on $(1, \sqrt{2}]$.

- increasing on $[\sqrt{2},+\infty)$: let $x, y \in[\sqrt{2},+\infty)$ such that $x<y$. Then:

$$
\begin{aligned}
\sqrt{2} \leq x<y & \Longrightarrow 2 \leq x^{2}<y^{2} \quad \text { since the square function is increasing on } \mathbb{R}_{+} \\
& \Longrightarrow 1 \leq x^{2}-1<y^{2}-1 \\
& \Longrightarrow 0 \leq \ln \left(x^{2}-1\right)<\ln \left(y^{2}-1\right) \\
& \Longrightarrow \cosh \left(\ln \left(x^{2}-1\right)\right)<\cosh \left(\ln \left(y^{2}-1\right)\right) \quad \text { since } \cosh \text { is increasing on } \mathbb{R}_{+}
\end{aligned}
$$

hence $f(x)<f(y)$, hence f is increasing on $[\sqrt{2},+\infty)$,
and by the parity of f :

- increasing on $[-\sqrt{2},-1)$,
- decreasing on $(-\infty,-\sqrt{2}]$.

5. - $\lim _{x \rightarrow+\infty} f(x)$: we know that:

$$
x^{2}-1 \underset{x \rightarrow+\infty}{\longrightarrow}+\infty \quad \text { and } \quad \ln (X) \underset{X \rightarrow+\infty}{\longrightarrow}+\infty
$$

hence, by composition of limits,

$$
\ln \left(x^{2}-1\right) \underset{x \rightarrow+\infty}{\longrightarrow}+\infty
$$

and since $\lim _{+\infty} \cosh =+\infty$ we obtain, by composition of limits,

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty
$$

- $\lim _{x \rightarrow 1^{+}} f(x)$: we know that

$$
x^{2}-1 \underset{x \rightarrow 1^{+}}{\longrightarrow} \quad 0 \quad \text { and } \quad \ln (X) \underset{X \rightarrow 0^{+}}{\longrightarrow}-\infty
$$

hence, by composition of limits,

$$
\ln \left(x^{2}-1\right) \underset{x \rightarrow 1^{+}}{\longrightarrow}-\infty
$$

and since lim $_{-\infty}$ cosh $=+\infty$ we obtain, by composition of limits,

$$
\lim _{x \rightarrow 1^{+}} f(x)=+\infty
$$

- By parity of f we deduce:

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{-}} f(x)=+\infty .
$$

6. Since $\lim _{+\infty} f=+\infty$ we conclude that f is not bounded from above, and that

$$
\sup f=+\infty .
$$

7. Let $x \in D$. Then:

$$
\begin{aligned}
f(x) & =\cosh \left(\ln \left(x^{2}-1\right)\right) \\
& =\frac{1}{2}\left(\exp \left(\ln \left(x^{2}-1\right)\right)+\exp \left(-\ln \left(x^{2}-1\right)\right)\right) \\
& =\frac{1}{2}\left(x^{2}-1+\frac{1}{x^{2}-1}\right) \\
& =-\frac{1}{2}+\frac{1}{2} x^{2}+\frac{1}{2} \frac{1}{x^{2}-1} .
\end{aligned}
$$

Hence $\alpha=-1 / 2, \beta=1 / 2$ and $\gamma=1 / 2$.
8. See Figure 3

Exercise 2.

1. B is well-defined since the domain of arcsinh is \mathbb{R}. For A : since $x^{2} \geq 0$ we conclude that $2 x^{2}+1 \geq 1$, and since the domain of cosh is $[1,+\infty)$, we conclude that A is well-defined too.
2. We have $x=\sinh (B)$ and hence, by the addition formula:

$$
2 x^{2}+1=2 \sinh ^{2}(B)+1=\cosh (2 B) .
$$

Hence

$$
A=\operatorname{arccosh}(\cosh (2 B))=2|B| .
$$

3.

$$
C=\sinh \left(\frac{1}{2} A\right)=\sinh (|B|)=\sinh |\operatorname{arcsinh}(x)|
$$

Since sinh is odd and $\sinh \left(\mathbb{R}_{+}\right) \subset \mathbb{R}_{+}$, it is easy to see that:

$$
\forall X \in \mathbb{R}, \sinh (|X|)=|\sinh (X)|,
$$

so that

$$
C=\sinh \left(\frac{1}{2} A\right)=\sinh (|B|)=|\sinh (\operatorname{arcsinh}(x))|=|x| .
$$

Exercise 3.

1. First observe that the inequality about E can be rewritten as:

$$
\forall t \in \mathbb{R}, t-1<E(t) \leq t
$$

Figure 3 - Graph of f and the curves $\left(C_{1}\right)$ (short dashes) and $\left(C_{2}\right)$ (long dashes) of Exercise 1 .

Let $n \in \mathbb{N}^{*}$. Then:

$$
\sum_{k=1}^{n}(k x-1)<\sum_{k=1}^{n} E(k x) \leq \sum_{k=1}^{n} k x .
$$

so that:

$$
\left(x \sum_{k=1}^{n} k\right)-n<\sum_{k=1}^{n} E(k x) \leq x \sum_{k=1}^{n} k .
$$

Now we know that

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

hence

$$
x \frac{n(n+1)}{2}-n<\sum_{k=1}^{n} E(k x) \leq x \frac{n(n+1)}{2} .
$$

and hence:

$$
x \frac{n(n+1)}{n^{2}}-\frac{2}{n}<\sum_{k=1}^{n} E(k x) \leq x \frac{n(n+1)}{n^{2}} .
$$

So $\alpha_{n}=-2 / n$.
2. For $n \in \mathbb{N}^{*}$,

$$
\frac{n(n+1)}{n^{2}}=\frac{n^{2}+n}{n^{2}}=1+\frac{1}{n} \underset{n \rightarrow+\infty}{\longrightarrow} 1,
$$

and

$$
\alpha_{n}=-\frac{2}{n} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

hence

$$
\lim _{n \rightarrow+\infty} x \frac{n(n+1)}{n^{2}}-\frac{2}{n}=\lim _{n \rightarrow+\infty} x{\frac{n(n+1)^{2}}{n}=x, ~ \text {, }}_{n}=x
$$

and we conclude, by the Squeeze Theorem, that $\lim _{+\infty} u_{n}$ exists and its value is x.

Exercise 4.

1. a)

$$
\ell_{1}=\lim _{x \rightarrow 0^{+}} x^{\beta}=\left\{\begin{array}{ll}
0 & \text { if } \beta>0 \\
1 & \text { if } \beta=0 \\
+\infty & \text { if } \beta<0
\end{array} \quad \text { and } \quad \ell_{2}=\lim _{x \rightarrow+\infty} x^{\beta}= \begin{cases}0 & \text { if } \beta<0 \\
1 & \text { if } \beta=0 \\
+\infty & \text { if } \beta>0\end{cases}\right.
$$

b) Let $x \in(0, \pi / 2)$ (which is a punctured right-sided neighborhood of 0). Then:

$$
\frac{\ln (1+\sin x)}{x^{\alpha}}=\frac{\ln (1+\sin x)}{\sin x} \frac{\sin x}{x} x^{\alpha-1}
$$

We know that:

$$
\lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1
$$

and since $\sin x \underset{x \rightarrow 0^{+}}{\longrightarrow} 0$ we conclude, by the composition of limits theorem,

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (1+\sin x)}{\sin x}=1
$$

We also know that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

hence:

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (1+\sin x)}{x^{\alpha}}= \begin{cases}0 & \text { if } \alpha<1 \\ 1 & \text { if } \alpha=1 \\ +\infty & \text { if } \alpha>1\end{cases}
$$

2. Let $x \in \mathbb{R}$. Then:

$$
f(x)^{2} \geq 0
$$

hence

$$
f(x)^{2}+1 \geq 1
$$

hence

$$
0<\frac{1}{f(x)^{2}+1} \leq 1
$$

which show that the function $x \mapsto \frac{1}{1+f(x)^{2}}$ is bounded.

- Since $\lim _{x \rightarrow+\infty} x=+\infty$ we conclude, by (a corollary of) the Squeeze Theorem:

$$
\ell_{1}=\lim _{x \rightarrow+\infty} \frac{1}{1+f(x)^{2}}=+\infty
$$

- Since $\lim _{x \rightarrow 0} x=0$ we conclude, by (a corollary of) the Squeeze Theorem:

$$
\ell_{2}=\lim _{x \rightarrow 0} \frac{1}{1+f(x)^{2}}=0
$$

Exercise 5. It is false: for example with $f=\tanh$ and $g=\tanh +1$. Then, clearly, $f<g, f$ is bounded from above and $\sup f=1, g$ is bounded from below and $\inf g=0$ and the inequality

$$
\begin{equation*}
\sup f=1 \leq \inf g=0 \tag{P}
\end{equation*}
$$

is false. See Figure 4

Figure 4 - Graph of f and g where $f<g, f$ is bounded from above and g is bounded from below, and $\sup f<\inf g$.

