Exercise 1.

1. For $t \in \mathbb{R}_{+}^{*}$,

$$
f(t)=\exp (\sin (t) \ln (t))
$$

hence, by the Chain Rule and the Product Rule f is differentiable and:

$$
\forall t \in \mathbb{R}_{+}^{*}, f^{\prime}(t)=\left(\cos (t) \ln (t)+\frac{\sin (t)}{t}\right) t^{\sin (t)}
$$

2. Since $\sin (x) \underset{x \rightarrow 0}{\longrightarrow} 0$,

$$
\mathrm{e}^{\sin (x)}-1 \underset{x \rightarrow 0}{\sim} \sin (x) \underset{x \rightarrow 0}{\sim} x
$$

and hence:

$$
\frac{\mathrm{e}^{\sin (x)}-1}{\cos (x)-1} \arctan (x) \underset{x \rightarrow 0}{\sim} \frac{x}{-x^{2} / 2} x=-\frac{1}{2} \underset{x \rightarrow 0}{\longrightarrow}-\frac{1}{2} .
$$

Hence $\ell=-1 / 2$.
3. - If $\alpha>0$ then $x^{\alpha} \underset{x \rightarrow+\infty}{\longrightarrow}+\infty$ hence $1+x^{\alpha} \underset{x \rightarrow+\infty}{\sim} x^{\alpha}$ hence $x^{-\alpha}\left(1+x^{\alpha}\right) \underset{x \rightarrow+\infty}{\sim} 1$.

- If $\alpha=0$, then $x^{-\alpha}\left(1+x^{\alpha}\right)=2 \underset{x \rightarrow+\infty}{\sim} 2$.
- If $\alpha<0$, then $x^{\alpha} \underset{x \rightarrow+\infty}{\longrightarrow} 0$, hence $x^{-\alpha}\left(1+x^{\alpha}\right) \underset{x \rightarrow+\infty}{\sim} x^{-\alpha}$.

4. We know that

$$
\begin{gathered}
\ln (1+x) \underset{x \rightarrow 0}{=} x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right) \\
\mathrm{e}^{x} \underset{x \rightarrow 0}{=} 1+x+\frac{x^{2}}{2}+o\left(x^{2}\right)
\end{gathered}
$$

so that

$$
\begin{aligned}
\mathrm{e}^{x} \ln (1+x) & \underset{x \rightarrow 0}{=}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right)\right)\left(1+x+\frac{x^{2}}{2}+o\left(x^{2}\right)\right) \\
& =x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right)
\end{aligned}
$$

hence

$$
\frac{\mathrm{e}^{x} \ln (1+x)-x-x^{2} / 2}{x^{3}} \underset{x \rightarrow 0}{=} \frac{1}{3}+o(1) \underset{x \rightarrow 0}{\longrightarrow} \frac{1}{3} .
$$

Exercise 2.

1. If f is of class C^{N} on $[a, b]$ and $N+1$ times differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f(b)=\sum_{k=0}^{N} \frac{f^{(k)}(a)}{k!}(b-a)^{k}+\frac{f^{(N+1)}(c)}{(N+1)!}(b-a)^{N+1} .
$$

2. In the case $f=\cos , a=0, b=x \in(0, \pi / 2]$ and $N=5$ (which is valid since \cos is of class C^{∞} on \mathbb{R}, we conclude that there exists $c \in(0, x)$ such that

$$
\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{\cos (c)}{6!} x^{6} .
$$

For P we take:

$$
P(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}
$$

and we indeed have $\operatorname{deg} P=4 \leq 5$.
Now from

$$
0<c<x \leq \frac{\pi}{2}
$$

applying cos which is decreasing on $[0, \pi / 2]$ yields

$$
1>\cos (c)>\cos (x) \geq 0
$$

and hence, since $-x^{6} / 6!<0$:

$$
-\frac{x^{6}}{6!}<-\frac{\cos (c)}{6!} x^{6}<0
$$

and finally:

$$
P(x)-\frac{x^{6}}{6!}<P(x)-\frac{\cos (c)}{6!} x^{6}=\cos (x)<P(x)
$$

as required with $\alpha=1 / 6$!.
3. From the given values:

$$
0.944958<P\left(\frac{1}{3}\right)<0.944959
$$

and hence

$$
0.944956<P\left(\frac{1}{3}\right)-\frac{1}{6!}\left(\frac{1}{3}\right)^{6}
$$

Applying the previous result with $x=1 / 3$ and these values yields

$$
0.944956<\cos \left(\frac{1}{3}\right)<0.944959
$$

from which we deduce:

$$
\cos \left(\frac{1}{3}\right)=0.94495 \ldots
$$

(and the next digit is either a 6 , a 7 or an 8).

Exercise 3.

1. Let $a, b \in \mathbb{R}$ with $a \neq b$, let $f:[a, b] \rightarrow \mathbb{R}$ such that f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

2. We proceed by contradiction: we assume that there exists $a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)=a$ and $f(b)=b$. Since f is differentiable on \mathbb{R}, f is continuous on $[a, b]$ and differentiable on (a, b) hence, by the Mean Value Theorem, there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1,
$$

which is impossible.

Exercise 4.

1. - On $\left[x_{1}, x_{2}\right]$: since f is twice differentiable on $\left[x_{1}, x_{3}\right], f$ is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on $\left(x_{1}, x_{2}\right)$, and since $f\left(x_{1}\right)=f\left(x_{2}\right)$ we conclude, by Rolle's Theorem, that there exists $c_{1} \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}\left(c_{1}\right)=0$.

- On $\left[x_{2}, x_{3}\right]$: since f is twice differentiable on $\left[x_{1}, x_{3}\right], f$ is continuous on $\left[x_{2}, x_{3}\right]$ and differentiable on $\left(x_{2}, x_{3}\right)$, and since $f\left(x_{2}\right)=f\left(x_{3}\right)$ we conclude, by Rolle's Theorem, that there exists $c_{2} \in\left(x_{2}, x_{3}\right)$ such that $f^{\prime}\left(c_{2}\right)=0$.
- On $\left[c_{1}, c_{2}\right]$: since f is twice differentiable on $\left[x_{1}, x_{3}\right], f^{\prime}$ is differentiable on $\left[x_{1}, x_{3}\right]$ and hence f^{\prime} is continuous on $\left[c_{1}, c_{2}\right]$ and differentiable on $\left(c_{1}, c_{2}\right)$. Hence, by Rolle's Theorem, there exists $c \in\left(c_{1}, c_{2}\right) \subset$ $\left(x_{1}, x_{3}\right)$ such that $f^{\prime \prime}(c)=0$.

2. Assume that P has at least three distinct real roots say $x_{1}<x_{2}<x_{3}$. Then, by the previous question, there exists $c \in\left(x_{1}, x_{3}\right)$ such that $P^{\prime \prime}(c)=0$. But this is impossible since:

$$
\forall x \in \mathbb{R}, P^{\prime \prime}(x)=12 x^{2}+2 \alpha \geq 2 \alpha>0
$$

Exercise 5.

1. For $x \in[1 / \mathrm{e},+\infty)$,

$$
f^{\prime}(x)=\ln (x)+\frac{x}{x}=\ln (x)+1 .
$$

2. Since

$$
\forall x \in(1 / \mathrm{e},+\infty), f^{\prime}(x)>0
$$

and f is continuous, we conclude that f is increasing hence injective.
Moreover, by the the continuity of f again, and by (a corollary of) the Intermediate Value Theorem, we know that

$$
f([1 / \mathrm{e},+\infty))=\left[f(1 / e), \lim _{+\infty} f\right)=[-1 / e,+\infty)
$$

Hence f is also onto.
3. Since $f(1)=0$ we have $f^{-1}(0)=1$. Now f is differentiable at 1 and $f^{\prime}(1)=1 \neq 0$ so we conclude, by the Inverse Function Rule, that f^{-1} is differentiable at 0 and that

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{1}=1
$$

4. Since $f(1 / \mathrm{e})=-1 / \mathrm{e}$ we have $f^{-1}(-1 / \mathrm{e})=1 / \mathrm{e}$. Now $f^{\prime}(1 / \mathrm{e})=0$ so we conclude that f^{-1} is not differentiable at $-1 / \mathrm{e}$.

Exercise 6.

1.

$$
f(x) \underset{x \rightarrow 0^{+}}{\sim} \frac{x^{\alpha}}{1 \times x}=x^{\alpha-1}, \quad f(x) \underset{x \rightarrow+\infty}{\sim} \frac{x^{\alpha}}{x^{2} \frac{\mathrm{e}^{x / 2}}{2}}=2 x^{\alpha-2} \mathrm{e}^{x / 2}
$$

2. From the equivalent of f at 0^{+}we conclude:

$$
\lim _{0^{+}} f= \begin{cases}0 & \text { if } \alpha>1 \\ 1 & \text { if } \alpha=1\end{cases}
$$

hence f possesses an extension by continuity \tilde{f} at 0 and

$$
\tilde{f}(0)= \begin{cases}0 & \text { if } \alpha>1 \\ 1 & \text { if } \alpha=1\end{cases}
$$

3. Let $x \in \mathbb{R}_{+}^{*}$. Then:

$$
\frac{\tilde{f}(x)-\tilde{f}(0)}{x-0}=\frac{f(x)}{x} \underset{x \rightarrow 0^{+}}{\sim} x^{\alpha-2} \underset{x \rightarrow 0^{+}}{\longrightarrow} \begin{cases}0 & \text { if } \alpha>2 \\ 1 & \text { if } \alpha=2 \\ +\infty & \text { if } \alpha<2\end{cases}
$$

hence \tilde{f} is differentiable (on the right) at 0 if and only if $\alpha \geq 2$ and in this case

$$
\tilde{f}_{r}^{\prime}(0)= \begin{cases}0 & \text { if } \alpha>2 \\ 1 & \text { if } \alpha=2\end{cases}
$$

4. a) We take $\sinh (x) \underset{x \rightarrow 0}{=} x+x^{3} / 6+o\left(x^{3}\right)$ and we obtain:

$$
\begin{aligned}
& x-\left(1+x^{2}\right) \sinh (x) \underset{x \rightarrow 0}{ }=x-\left(1+x^{2}\right)\left(x+\frac{x^{3}}{6}+o\left(x^{3}\right)\right) \\
&=x-\left(x+\frac{7 x^{3}}{6}+o\left(x^{3}\right)\right) \\
& x \rightarrow 0 \\
&=-\frac{7 x^{3}}{6}+o\left(x^{3}\right) .
\end{aligned}
$$

b) Hence

$$
x-\left(1+x^{2}\right) \sinh (x) \underset{x \rightarrow 0}{\sim}-\frac{7 x^{3}}{6} .
$$

So $\lambda=-7 / 6$.
c) Let $x \in \mathbb{R}_{+}^{*}$. Then:

$$
\begin{aligned}
& \frac{\tilde{f}(x)-\tilde{f}(0)}{x-0}=\frac{f(x)-1}{x} \\
&=\frac{x}{\left(1+x^{2}\right) \sinh (x)}-1 \\
& x \\
&=\frac{x-\left(1+x^{2}\right) \sinh (x)}{x\left(1+x^{2}\right) \sinh (x)} \\
& \underset{x \rightarrow 0^{+}}{ } \frac{-7 x^{3} / 6}{x^{2}}=-\frac{7}{6} x \underset{x \rightarrow 0^{+}}{\longrightarrow} 0 .
\end{aligned}
$$

Hence \tilde{f} is differentiable from the right at 0 and we have $\tilde{f}_{r}^{\prime}(0)=0$.

Exercise 7.

1. We use $u(x)=x$ and $v^{\prime}(x)=\sin (x)$ so that $u^{\prime}(x)=1$ and we can take $v(x)=-\cos (x)$:

$$
\begin{aligned}
I & =[-x \cos (x)]_{x=0}^{x=\pi / 3}+\int_{0}^{\pi / 3} \cos (x) \mathrm{d} x \\
& =-\frac{\pi}{3} \cos \left(\frac{\pi}{3}\right)-0+[\sin (x)]_{x=0}^{x=\pi / 3} \\
& =-\frac{\pi}{6}+\sin \left(\frac{\pi}{3}\right)-0 \\
& =-\frac{\pi}{6}+\frac{\sqrt{3}}{2}
\end{aligned}
$$

2. With $t=\cos (x)$ we have $\mathrm{d} t=-\sin (x) \mathrm{d} x$, and when $x=0, t=1$ and when $x=\pi, t=-1$. Then:

$$
\begin{aligned}
J & =\int_{1}^{-1}-\frac{\mathrm{d} t}{1+t^{2}} \\
& =\int_{-1}^{1} \frac{\mathrm{~d} t}{1+t^{2}} \\
& =[\arctan (t)]_{t=-1}^{t=1} \\
& =\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)= \\
& =\frac{\pi}{2} .
\end{aligned}
$$

