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Exercise 1. With

ln(1 + x) =
x→0

x− x2

2
− x3

3
+ o
(
x3
)

and a long division we obtain:

f(x) =
x→0

1 +
x

2
− x2

12
+ o
(
x2
)

from which we deduce
lim
x→0

f(x) = 1.

Hence f possesses an extension by continuity at 0.
Since f̃ possesses a first order Taylor–Young expansion at 0 we conclude that f̃ is differentiable at 0 at f̃ ′(0) = 1/2.
The equation of the tangent line ∆ to the graph of f at 0 is:

∆: y = 1− x

2
.

By looking at the sign of the second order term in the expansion:

−x
2

12
< 0

we conclude that the graph of f̃ is below ∆ in a neighborhood of 0.

Figure 5 – Graph of f̃ and ∆ (dashed) in a neighborhood of 0 (Exercise 1)
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Exercise 2.

1. Let x ∈ R∗+. Then
[
x,
√
x
]
⊂ R∗+ where the function t 7→ et/t2 is continuous. Hence∫ x+

√
x

x

et

t2
dt

is well defined.

2. Since the function t 7→ et/t2 is continuous on R∗+ it possesses an antiderivative say F . Then, for all x ∈ R∗+,

G(x) = F
(
x+
√
x
)
− F (x)

and we conclude, by the Chain Rule, that G is differentiable and that:

G′(x) =

(
1 +

1

2
√
x

)
F ′
(
x+
√
x
)
− F ′(x)

=

(
1 +

1

2
√
x

)
ex+
√
x(

x+
√
x
)2 − ex

x2

3. Let x ∈ R∗+. The function exp is continuous on
[
x, x+

√
x
]
and the function t 7→ 1/t2 is (piecewise) continuous

and positive on
[
x, x+

√
x
]
hence, by the Mean Value Theorem (MVT2) there exists cx ∈

[
x, x+

√
x
]
such

that

G(x) = ecx
∫ x+

√
x

x

dt

t2
= ecx

[
−1

t

]t=x+√x
t=x

= ecx
(
− 1

x+
√
x

+
1

x

)
= ecx

√
x

x
(
x+
√
x
) =

ecx
√
x
(
x+
√
x
)

4. Let x ∈ R∗+. Since cx ∈
[
x, x+

√
x], we conclude that

ex ≤ ecx ≤ ex+
√
x

and hence lim
x→0+

cx = 1. Moreover,

x+
√
x ∼
x→0+

√
x.

We hence conclude that
G(x) ∼

x→0+

1

x
.

and lim
x→0+

G(x) = +∞.

From the inequality
ex ≤ ecx ≤ ex+

√
x

we conclude
ex

√
x
(
x+
√
x
) ≤ G(x)

and since
ex

√
x
(
x+
√
x
) −→
x→+∞

+∞

(the exponential grows faster than the powers of x), we conclude that lim
x→+∞

G(x) = +∞.

Exercise 3.

1.

I0 =

∫ 1

0

ex dx = e− 1.



2. Let n ∈ N. For x ∈ [0, 1] we have:
0 ≤ 1− x ≤ 1

hence
0 ≤ (1− x)n ≤ 1

and
0 ≤ ex ≤ e

We hence conclude
0 ≤ (1− x)nex ≤ (1− x)ne.

Since 0 < 1 we can integrate (with respect to x) this inequality:

0 ≤
∫ 1

0

(1− x)nex dx ≤
∫ 1

0

(1− x)ne dx.

Now ∫ 1

0

(1− x)n dx =

[
1

n+ 1
(1− x)n+1

]x=1

x=0

=
1

n+ 1

and we conclude:
0 ≤ In ≤

1

n!

e

n+ 1
=

e

(n+ 1)!
.

By the Squeeze Theorem we conclude that In −→
n→+∞

0.

3. Let n ∈ N. By an integration by parts with u(x) = (1− x)n+1 and v′(x) = ex we have:

In+1 =
1

(n+ 1)!

∫ 1

0

(1− x)n+1ex dx

=
1

(n+ 1)!

([
(1− x)n+1ex

]x=1

x=0
+ (n+ 1)

∫ 1

0

(1− x)nex dx

)
=

1

(n+ 1)!

(
1 + (n+ 1)

∫ 1

0

(1− x)nex dx

)
=

1

(n+ 1)!
+ In

4. We can proceed by induction:

• For n = 0: from Question 1 we have

I0 = e− 1 = e−
0∑
k=0

1

k
!

• Assume that the result is true for some n ∈ N. Then:

In+1 = In+1 − In + In

= − 1

(n+ 1)!
+ In by Question 3

= − 1

(n+ 1)!
+ e−

n∑
k=0

1

k!
by the induction hypothesis

= e−
n+1∑
k=0

1

k!

5. Since In −→
n→+∞

0 we conclude

lim
n→+∞

n∑
k=0

1

k!
= e.



Exercise 4.

• 0E ∈ F since 0E(2X) = 0E = X0′E(X). Hence F 6= ∅.

• Let P,Q ∈ F and λ ∈ R, and set R = P + λQ. We now to show that R ∈ F :

R(2X) = P (2X) + λQ(2X) = XP ′(X) + λXQ′(X) = XR′(X).

Hence F is a subspace of E.

Exercise 5.

1. Let (x, y, z, t) ∈ E. Then:

(x, y, z, t) ∈ F ⇐⇒

x− y+ z− t= 0
x+ y− z− t= 0

y− z = 0

⇐⇒
R2 ← R2 − R1

x− y+ z− t= 0
2y− 2z = 0
y− z = 0

⇐⇒
{
x− y+ z− t= 0

y− z = 0

⇐⇒


x = t

y = z

z = z

t = t

⇐⇒ (x, y, z, t) = z(0, 1, 1, 0) + t(1, 0, 0, 1)

Hence a basis of F is:
B =

(
(0, 1, 1, 0), (1, 0, 0, 1)

)
and dimF = 2.

2. • We first check that F and G are independent, i.e., F ∩G = {0E}: let w ∈ F ∩G. Since w ∈ G, there
exists α, β ∈ R such that w = αu+ βv = (α+ β, 0, α− β, 0). Now since w ∈ F we must have:

(α+ β)− 0 + (α− β)− 0 = 0

(α+ β) + 0− (α− β)− 0 = 0

0− (α− β) = 0

from which we conclude α = β = 0 and hence w = 0E .

• Since u and v are not collinear, we know that dimG = 2. By Grassmann’s formula:

dim(F ⊕G) = 2 + 2 = 4 = dimE

We hence conclude, by the Inclusion–Equality Theorem, that F ⊕G = E.

Exercise 6.

1. • Ker f : let (x, y, z) ∈ R3. Then:

(x, y, z) ∈ Ker f ⇐⇒ f(x, y, z) = (0, 0, 0)

⇐⇒

 x+ y+ z= 0
x− y− z= 0

3x+ y+ z= 0

⇐⇒
R2 ← R2 − R1

R3 ← R3 − 3R1

x+ y+ z= 0
− 2y− 2z= 0
− 2y− 2z= 0



⇐⇒
{
x+ y+ z= 0
− 2y− 2z= 0

⇐⇒
{
x = 0y = −zz = z

⇐⇒ (x, y, z) = z(0,−1, 1)

Hence Ker f = Span
{

(0,−1, 1)
}
and a basis of Ker f is:(

(0,−1, 1)
)

• Im f : we know that (
f(1, 0, 0), f(0, 1, 0), f(0, 0, 1)

)
is a generating family of Im f . Now,

f(1, 0, 0) = (1, 1, 3) f(0, 1, 0) = (1,−1, 1) f(0, 0, 1) = (1,−1, 1)

Since f(0, 1, 0) = f(0, 0, 1) we conclude that a basis of Im f is:(
(1, 1, 3), (1,−1, 1)

)
.

Hence rk f = 2.

2. Since Ker f 6= {0E}, f is not injective and since Im f 6= R3, f is not surjective. f is not bijective.

3. Let E and F be two vector spaces over K and let f : E → F be a linear map. Then:

dimE = dim Ker f + rk f.

4. In our case, we have E = F = R3 and indeed:

3 = dimE = dim Ker f + rk f = 1 + 2.

Exercise 7.

1. Let (x, y, z) ∈ E and let α, β, γ ∈ R. Then:

(x, y, z) = αu1 + βu2 + γu3 ⇐⇒

α+β =x
α−β+ γ= y

β+ γ= z

⇐⇒
R2 ← R2 − R1

α+ β =x
− 2β+ γ=−x+ y

β+ γ= z

⇐⇒
R2 ↔ R3

α+ β =x
β+ γ= z

− 2β+ γ=−x+ y

⇐⇒
R3 ← R3 + 2R2

α+β =x
β+ γ= z

3γ=−x+ y + 2z

⇐⇒


α = x− β =

2x

3
+
y

3
− z

3

β = z − γ =
x

3
− y

3
+
z

3

γ = −x
3

+
y

3
+

2z

3

Since this system possesses a unique solution, we conclude that B is a basis of E and for v = (x, y, z) ∈ E
one has:

[v]B =


2x

3
+
y

3
− z

3
x

3
− y

3
+
z

3

−x
3

+
y

3
+

2z

3





2. We know that a linear map is uniquely determined by the image of a basis of its domain. Since B is a basis
of E we conclude that such an f exists and is unique.

3.
A =

(
1 −1 −2
2 1 1

)
4. From Question 1:

(1, 0, 0) =
2

3
u1 +

1

3
u2 −

1

3
u3, (0, 1, 0) =

1

3
u1 −

1

3
u2 +

1

3
u3, (0, 0, 1) = −1

3
u1 +

1

3
u2 +

2

3
u3,

hence

f(1, 0, 0) =
2

3
f(u1) +

1

3
f(u2)− 1

3
f(u3)

=
2

3
(1, 2) +

1

3
(−1, 1)− 1

3
(−2, 1)

=
1

3
(3, 4)

f(0, 1, 0) =
1

3
f(u1)− 1

3
f(u2) +

1

3
f(u3)

=
1

3
(1, 2)− 1

3
(−1, 1) +

1

3
(−2, 1)

=
1

3
(0, 2)

f(0, 0, 1) = −1

3
f(u1) +

1

3
f(u2) +

2

3
f(u3)

= −1

3
(1, 2) +

1

3
(−1, 1) +

2

3
(−2, 1)

=
1

3
(−6, 1)

hence
B =

(
1 0 −2

4/3 2/3 1/3

)
5. With

P =

1 1 0
1 −1 1
0 1 1


we have A = BP .


