Exercise 1. With

$$
\ln (1+x) \underset{x \rightarrow 0}{=} x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+o\left(x^{3}\right)
$$

and a long division we obtain:

$$
f(x) \underset{x \rightarrow 0}{=} 1+\frac{x}{2}-\frac{x^{2}}{12}+o\left(x^{2}\right)
$$

from which we deduce

$$
\lim _{x \rightarrow 0} f(x)=1
$$

Hence f possesses an extension by continuity at 0 .
Since \tilde{f} possesses a first order Taylor-Young expansion at 0 we conclude that \tilde{f} is differentiable at 0 at $\tilde{f}^{\prime}(0)=1 / 2$. The equation of the tangent line Δ to the graph of f at 0 is:

$$
\Delta: y=1-\frac{x}{2} .
$$

By looking at the sign of the second order term in the expansion:

$$
-\frac{x^{2}}{12}<0
$$

we conclude that the graph of \tilde{f} is below Δ in a neighborhood of 0 .
Figure 5 - Graph of \tilde{f} and Δ (dashed) in a neighborhood of 0 (Exercise 11)

Exercise 2.

1. Let $x \in \mathbb{R}_{+}^{*}$. Then $[x, \sqrt{x}] \subset \mathbb{R}_{+}^{*}$ where the function $t \mapsto \mathrm{e}^{t} / t^{2}$ is continuous. Hence

$$
\int_{x}^{x+\sqrt{x}} \frac{\mathrm{e}^{t}}{t^{2}} \mathrm{~d} t
$$

is well defined.
2. Since the function $t \mapsto \mathrm{e}^{t} / t^{2}$ is continuous on \mathbb{R}_{+}^{*} it possesses an antiderivative say F. Then, for all $x \in \mathbb{R}_{+}^{*}$,

$$
G(x)=F(x+\sqrt{x})-F(x)
$$

and we conclude, by the Chain Rule, that G is differentiable and that:

$$
\begin{aligned}
G^{\prime}(x) & =\left(1+\frac{1}{2 \sqrt{x}}\right) F^{\prime}(x+\sqrt{x})-F^{\prime}(x) \\
& =\left(1+\frac{1}{2 \sqrt{x}}\right) \frac{\mathrm{e}^{x+\sqrt{x}}}{(x+\sqrt{x})^{2}}-\frac{\mathrm{e}^{x}}{x^{2}}
\end{aligned}
$$

3. Let $x \in \mathbb{R}_{+}^{*}$. The function exp is continuous on $[x, x+\sqrt{x}]$ and the function $t \mapsto 1 / t^{2}$ is (piecewise) continuous and positive on $[x, x+\sqrt{x}]$ hence, by the Mean Value Theorem (MVT2) there exists $c_{x} \in[x, x+\sqrt{x}]$ such that

$$
G(x)=\mathrm{e}^{c_{x}} \int_{x}^{x+\sqrt{x}} \frac{\mathrm{~d} t}{t^{2}}=\mathrm{e}^{c_{x}}\left[-\frac{1}{t}\right]_{t=x}^{t=x+\sqrt{x}}=\mathrm{e}^{c_{x}}\left(-\frac{1}{x+\sqrt{x}}+\frac{1}{x}\right)=\mathrm{e}^{c_{x}} \frac{\sqrt{x}}{x(x+\sqrt{x})}=\frac{\mathrm{e}^{c_{x}}}{\sqrt{x}(x+\sqrt{x})}
$$

4. Let $x \in \mathbb{R}_{+}^{*}$. Since $c_{x} \in[x, x+\sqrt{x}]$, we conclude that

$$
\mathrm{e}^{x} \leq \mathrm{e}^{c_{x}} \leq \mathrm{e}^{x+\sqrt{x}}
$$

and hence $\lim _{x \rightarrow 0^{+}} c_{x}=1$. Moreover,

$$
x+\sqrt{x} \underset{x \rightarrow 0^{+}}{\sim} \sqrt{x} .
$$

We hence conclude that

$$
G(x) \underset{x \rightarrow 0^{+}}{\sim} \frac{1}{x} .
$$

and $\lim _{x \rightarrow 0^{+}} G(x)=+\infty$.
From the inequality

$$
\mathrm{e}^{x} \leq \mathrm{e}^{c_{x}} \leq \mathrm{e}^{x+\sqrt{x}}
$$

we conclude

$$
\frac{\mathrm{e}^{x}}{\sqrt{x}(x+\sqrt{x})} \leq G(x)
$$

and since

$$
\frac{\mathrm{e}^{x}}{\sqrt{x}(x+\sqrt{x})} \underset{x \rightarrow+\infty}{\longrightarrow}+\infty
$$

(the exponential grows faster than the powers of x), we conclude that $\lim _{x \rightarrow+\infty} G(x)=+\infty$.

Exercise 3.

1.

$$
I_{0}=\int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}-1
$$

2. Let $n \in \mathbb{N}$. For $x \in[0,1]$ we have:

$$
0 \leq 1-x \leq 1
$$

hence

$$
0 \leq(1-x)^{n} \leq 1
$$

and

$$
0 \leq \mathrm{e}^{x} \leq \mathrm{e}
$$

We hence conclude

$$
0 \leq(1-x)^{n} \mathrm{e}^{x} \leq(1-x)^{n} \mathrm{e}
$$

Since $0<1$ we can integrate (with respect to x) this inequality:

$$
0 \leq \int_{0}^{1}(1-x)^{n} \mathrm{e}^{x} \mathrm{~d} x \leq \int_{0}^{1}(1-x)^{n} \mathrm{ed} x
$$

Now

$$
\int_{0}^{1}(1-x)^{n} \mathrm{~d} x=\left[\frac{1}{n+1}(1-x)^{n+1}\right]_{x=0}^{x=1}=\frac{1}{n+1}
$$

and we conclude:

$$
0 \leq I_{n} \leq \frac{1}{n!} \frac{\mathrm{e}}{n+1}=\frac{\mathrm{e}}{(n+1)!}
$$

By the Squeeze Theorem we conclude that $I_{n} \underset{n \rightarrow+\infty}{\longrightarrow} 0$.
3. Let $n \in \mathbb{N}$. By an integration by parts with $u(x)=(1-x)^{n+1}$ and $v^{\prime}(x)=\mathrm{e}^{x}$ we have:

$$
\begin{aligned}
I_{n+1} & =\frac{1}{(n+1)!} \int_{0}^{1}(1-x)^{n+1} \mathrm{e}^{x} \mathrm{~d} x \\
& =\frac{1}{(n+1)!}\left(\left[(1-x)^{n+1} \mathrm{e}^{x}\right]_{x=0}^{x=1}+(n+1) \int_{0}^{1}(1-x)^{n} \mathrm{e}^{x} \mathrm{~d} x\right) \\
& =\frac{1}{(n+1)!}\left(1+(n+1) \int_{0}^{1}(1-x)^{n} \mathrm{e}^{x} \mathrm{~d} x\right) \\
& =\frac{1}{(n+1)!}+I_{n}
\end{aligned}
$$

4. We can proceed by induction:

- For $n=0$: from Question 1 we have

$$
I_{0}=\mathrm{e}-1=\mathrm{e}-\sum_{k=0}^{0} \frac{1}{k}!
$$

- Assume that the result is true for some $n \in \mathbb{N}$. Then:

$$
\begin{array}{rlrl}
I_{n+1} & =I_{n+1}-I_{n}+I_{n} & \\
& =-\frac{1}{(n+1)!}+I_{n} & \text { by Question 3 } \\
& =-\frac{1}{(n+1)!}+\mathrm{e}-\sum_{k=0}^{n} \frac{1}{k!} & & \text { by the induction hypothesis } \\
& =\mathrm{e}-\sum_{k=0}^{n+1} \frac{1}{k!} &
\end{array}
$$

5. Since $I_{n} \xrightarrow[n \rightarrow+\infty]{\longrightarrow} 0$ we conclude

$$
\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} \frac{1}{k!}=\mathrm{e}
$$

Exercise 4.

- $0_{E} \in F$ since $0_{E}(2 X)=0_{E}=X 0_{E}^{\prime}(X)$. Hence $F \neq \emptyset$.
- Let $P, Q \in F$ and $\lambda \in \mathbb{R}$, and set $R=P+\lambda Q$. We now to show that $R \in F$:

$$
R(2 X)=P(2 X)+\lambda Q(2 X)=X P^{\prime}(X)+\lambda X Q^{\prime}(X)=X R^{\prime}(X)
$$

Hence F is a subspace of E.

Exercise 5.

1. Let $(x, y, z, t) \in E$. Then:

$$
\begin{aligned}
& (x, y, z, t) \in F \quad \Longleftrightarrow \quad\left\{\begin{array}{c}
x-y+z-t=0 \\
x+y-z-t=0 \\
y-z=0
\end{array}\right. \\
& R_{2} \underset{R_{2}}{ } \stackrel{R_{1}}{\Longleftrightarrow} \quad\left\{\begin{aligned}
x-y+z-t & =0 \\
2 y-2 z & =0 \\
y-z & =0
\end{aligned}\right. \\
& \Longleftrightarrow \quad\left\{\begin{aligned}
x-y+z-t & =0 \\
y-z & =0
\end{aligned}\right. \\
& \Longleftrightarrow \quad\left\{\begin{array}{l}
x=t \\
y=z \\
z=z \\
t=t
\end{array}\right. \\
& \Longleftrightarrow \quad(x, y, z, t)=z(0,1,1,0)+t(1,0,0,1)
\end{aligned}
$$

Hence a basis of F is:

$$
\mathscr{B}=((0,1,1,0),(1,0,0,1))
$$

and $\operatorname{dim} F=2$.
2. - We first check that F and G are independent, i.e., $F \cap G=\left\{0_{E}\right\}$: let $w \in F \cap G$. Since $w \in G$, there exists $\alpha, \beta \in \mathbb{R}$ such that $w=\alpha u+\beta v=(\alpha+\beta, 0, \alpha-\beta, 0)$. Now since $w \in F$ we must have:

$$
\left\{\begin{array}{l}
(\alpha+\beta)-0+(\alpha-\beta)-0=0 \\
(\alpha+\beta)+0-(\alpha-\beta)-0=0 \\
0-(\alpha-\beta)=0
\end{array}\right.
$$

from which we conclude $\alpha=\beta=0$ and hence $w=0_{E}$.

- Since u and v are not collinear, we know that $\operatorname{dim} G=2$. By Grassmann's formula:

$$
\operatorname{dim}(F \oplus G)=2+2=4=\operatorname{dim} E
$$

We hence conclude, by the Inclusion-Equality Theorem, that $F \oplus G=E$.

Exercise 6.

1. - $\operatorname{Ker} f: \operatorname{let}(x, y, z) \in \mathbb{R}^{3}$. Then:

$$
\begin{aligned}
& (x, y, z) \in \operatorname{Ker} f \quad \Longleftrightarrow \quad f(x, y, z)=(0,0,0) \\
& \Longleftrightarrow \quad\left\{\begin{aligned}
x+y+z & =0 \\
x-y-z & =0 \\
3 x+y+z & =0
\end{aligned}\right. \\
& \underset{\substack{ \\
R_{2} \\
R_{3} \leftarrow R_{3}-3 R_{1}}}{\Longleftrightarrow} \quad\left\{\begin{array}{r}
x+y+z=0 \\
-2 y-2 z=0 \\
-2 y-2 z=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow \quad\left\{\begin{aligned}
x+y+z & =0 \\
-2 y-2 z & =0
\end{aligned} \quad \Longleftrightarrow \quad\{x=0 y=-z z=z\right. \\
& \Longleftrightarrow \quad(x, y, z)=z(0,-1,1)
\end{aligned}
$$

Hence $\operatorname{Ker} f=\operatorname{Span}\{(0,-1,1)\}$ and a basis of $\operatorname{Ker} f$ is:

$$
((0,-1,1))
$$

- $\operatorname{Im} f$: we know that

$$
(f(1,0,0), f(0,1,0), f(0,0,1))
$$

is a generating family of $\operatorname{Im} f$. Now,

$$
f(1,0,0)=(1,1,3) \quad f(0,1,0)=(1,-1,1) \quad f(0,0,1)=(1,-1,1)
$$

Since $f(0,1,0)=f(0,0,1)$ we conclude that a basis of $\operatorname{Im} f$ is:

$$
((1,1,3),(1,-1,1))
$$

Hence $\operatorname{rk} f=2$.
2. Since $\operatorname{Ker} f \neq\left\{0_{E}\right\}, f$ is not injective and since $\operatorname{Im} f \neq \mathbb{R}^{3}, f$ is not surjective. f is not bijective.
3. Let E and F be two vector spaces over \mathbb{K} and let $f: E \rightarrow F$ be a linear map. Then:

$$
\operatorname{dim} E=\operatorname{dim} \operatorname{Ker} f+\operatorname{rk} f
$$

4. In our case, we have $E=F=\mathbb{R}^{3}$ and indeed:

$$
3=\operatorname{dim} E=\operatorname{dim} \operatorname{Ker} f+\operatorname{rk} f=1+2 .
$$

Exercise 7.

1. Let $(x, y, z) \in E$ and let $\alpha, \beta, \gamma \in \mathbb{R}$. Then:

$$
\begin{aligned}
& (x, y, z)=\alpha u_{1}+\beta u_{2}+\gamma u_{3} \quad \Longleftrightarrow \quad\left\{\begin{array}{r}
\alpha+\beta=x \\
\alpha-\beta+\gamma=y \\
\beta+\gamma=z
\end{array}\right. \\
& R_{2} \stackrel{\Longleftrightarrow R_{2}}{ }-R_{1} \quad\left\{\begin{aligned}
\alpha+\beta & =x \\
-2 \beta+\gamma & =-x+y \\
\beta+\gamma & =z
\end{aligned}\right. \\
& \underset{R_{2}}{\Longleftrightarrow} \Longleftrightarrow R_{3} \quad\left\{\begin{aligned}
\alpha+\beta & =x \\
\beta+\gamma & =z \\
-2 \beta+\gamma & =-x+y
\end{aligned}\right. \\
& R_{3} \longleftarrow \stackrel{R_{3}+2 R_{2}}{\Longleftrightarrow} \quad\left\{\begin{aligned}
\alpha+\beta & =x \\
\beta+\gamma & =z \\
3 \gamma & =-x+y+2 z
\end{aligned}\right. \\
& \Longleftrightarrow \quad\left\{\begin{array}{l}
\alpha=x-\beta=\frac{2 x}{3}+\frac{y}{3}-\frac{z}{3} \\
\beta=z-\gamma=\frac{x}{3}-\frac{y}{3}+\frac{z}{3} \\
\gamma=-\frac{x}{3}+\frac{y}{3}+\frac{2 z}{3}
\end{array}\right.
\end{aligned}
$$

Since this system possesses a unique solution, we conclude that \mathscr{B} is a basis of E and for $v=(x, y, z) \in E$ one has:

$$
[v]_{\mathscr{B}}=\left(\begin{array}{c}
\frac{2 x}{3}+\frac{y}{3}-\frac{z}{3} \\
\frac{x}{3}-\frac{y}{3}+\frac{z}{3} \\
-\frac{x}{3}+\frac{y}{3}+\frac{2 z}{3}
\end{array}\right)
$$

2. We know that a linear map is uniquely determined by the image of a basis of its domain. Since \mathscr{B} is a basis of E we conclude that such an f exists and is unique.
3.

$$
A=\left(\begin{array}{ccc}
1 & -1 & -2 \\
2 & 1 & 1
\end{array}\right)
$$

4. From Question 1:
$(1,0,0)=\frac{2}{3} u_{1}+\frac{1}{3} u_{2}-\frac{1}{3} u_{3}$,
$(0,1,0)=\frac{1}{3} u_{1}-\frac{1}{3} u_{2}+\frac{1}{3} u_{3}$,
$(0,0,1)=-\frac{1}{3} u_{1}+\frac{1}{3} u_{2}+\frac{2}{3} u_{3}$,
hence

$$
\begin{aligned}
f(1,0,0) & =\frac{2}{3} f\left(u_{1}\right)+\frac{1}{3} f\left(u_{2}\right)-\frac{1}{3} f\left(u_{3}\right) \\
& =\frac{2}{3}(1,2)+\frac{1}{3}(-1,1)-\frac{1}{3}(-2,1) \\
& =\frac{1}{3}(3,4) \\
f(0,1,0) & =\frac{1}{3} f\left(u_{1}\right)-\frac{1}{3} f\left(u_{2}\right)+\frac{1}{3} f\left(u_{3}\right) \\
& =\frac{1}{3}(1,2)-\frac{1}{3}(-1,1)+\frac{1}{3}(-2,1) \\
& =\frac{1}{3}(0,2) \\
f(0,0,1) & =-\frac{1}{3} f\left(u_{1}\right)+\frac{1}{3} f\left(u_{2}\right)+\frac{2}{3} f\left(u_{3}\right) \\
& =-\frac{1}{3}(1,2)+\frac{1}{3}(-1,1)+\frac{2}{3}(-2,1) \\
& =\frac{1}{3}(-6,1)
\end{aligned}
$$

hence

$$
B=\left(\begin{array}{ccc}
1 & 0 & -2 \\
4 / 3 & 2 / 3 & 1 / 3
\end{array}\right)
$$

5. With

$$
P=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

we have $A=B P$.

