Exercise 1.

1. a) For $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

b)

$$
\sum_{k=0}^{n} q^{n}= \begin{cases}n+1 & \text { if } q=1 \\ \frac{1-q^{n+1}}{1-q} & \text { otherwise }\end{cases}
$$

2. Let $k \in \mathbb{N}$. By the Binomial Theorem we have:

$$
\sum_{j=0}^{k}\binom{k}{j} x^{2 j}=\sum_{j=0}^{k}\binom{k}{j}\left(x^{2}\right)^{j} 1^{k-j}=\left(1+x^{2}\right)^{k}
$$

In particular, this sum is not nil, hence S is well defined, and:

$$
S=\sum_{k=0}^{n} \frac{1}{\left(1+x^{2}\right)^{k}}=\sum_{k=0}^{n}\left(\frac{1}{1+x^{2}}\right)^{k}
$$

There are two cases:

- if $x=0$, then $q=1 /\left(1+x^{2}\right)=1$ and we have $S=n+1$,
- if $x \neq 0$, then $q=1 /\left(1+x^{2}\right) \neq 1$ and we have:

$$
S=\frac{1-q^{n+1}}{1-q}=\frac{1-\frac{1}{\left(1+x^{2}\right)^{n+1}}}{1-\frac{1}{1+x^{2}}}=\frac{1}{x^{2}}+1+\frac{1}{x^{2}}\left(\frac{1}{1+x^{2}}\right)^{n}
$$

Exercise 2.

1. We know that $\sin (\pi / 6)=1 / 2 \geq 0$ (and also that $\pi / 6 \geq 0$) hence, from $(*)$:

$$
\frac{1}{2} \leq \frac{\pi}{6}
$$

hence $\pi \geq 3$.
2.

$$
\begin{aligned}
& \sin \left(\frac{\pi}{12}\right)=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4}=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}-\frac{1}{2} \frac{\sqrt{2}}{2}=\frac{1}{2 \sqrt{2}}(\sqrt{3}-1) \\
& \cos \left(\frac{\pi}{12}\right)=\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\cos \frac{\pi}{3} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \sin \frac{\pi}{4}=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}+\frac{1}{2} \frac{\sqrt{2}}{2}=\frac{1}{2 \sqrt{2}}(\sqrt{3}+1) \\
& \tan \left(\frac{\pi}{12}\right)=\frac{\sin (\pi / 2)}{\cos (\pi / 12)}=\frac{\sqrt{3}-1}{\sqrt{3}+1}
\end{aligned}
$$

3. From $(*)$ (with $\sin (\pi / 12) \geq 0$ and $\pi / 12 \geq 0)$:

$$
\sin \left(\frac{\pi}{12}\right) \leq \frac{\pi}{12}
$$

hence

$$
\frac{1}{2 \sqrt{2}}(\sqrt{3}-1) \leq \frac{\pi}{12}
$$

hence

$$
\pi \geq \frac{12}{2 \sqrt{2}}(\sqrt{3}-1)=3 \sqrt{2}(\sqrt{3}-1)
$$

Figure 1 - Graph of function f of Exercise 3

Exercise 3.

1. See Figure 1.
2. The range of f is $f(\mathbb{R})=\mathbb{R}_{+}^{*}$.
3. - f is not surjective since its range is \mathbb{R}_{+}^{*} which is different from its codomain which is \mathbb{R}.

- f is not injective since $f(-1)=-1 /(-1)=1=f(1)$ yet $-1 \neq 1$.
- f is not bijective (since not surjective).

4.

$$
\begin{aligned}
f\left(\mathbb{R}_{+}\right) & =\mathbb{R}_{+}^{*}, & f^{[-1]}\left(\mathbb{R}_{-}\right) & =\emptyset, \\
f\left(\mathbb{R}_{+}^{*}\right) & =\mathbb{R}_{+}^{*}, & f^{[-1]}([1,+\infty)) & =[-1,0] \cup[1,+\infty), \\
f([0,1)) & =(0,1], & f^{[-1]}((-\infty, 1]) & =(-\infty,-1] \cup[0,1], \\
f((-1,0]) & =[1,+\infty), & f^{[-1]}([1,2)) & =\left[-1,-\frac{1}{2}\right] \cup\{0\} \cup[1,2) .
\end{aligned}
$$

Exercise 4.

1. Since the codomain of f is equal to (hence included in) its domain, $f \circ f$ is well-defined.
2. - f is injective: let $x, y \in A$ such that $f(x)=f(y)$. Then (applying f) yields

$$
(f \circ f)(x)=(f \circ f)(y)
$$

i.e., $g(x)=g(y)$. Since g is injective, we conclude that $x=y$.

Hence f is injective.

- f is surjective: let $y \in A$. Since g is surjective, there exists $a \in A$ such that $g(a)=y$. Define $x=f(a)$. We then have:

$$
f(x)=f(f(a))=g(a)=y .
$$

Hence there exists $x \in A$ such that $f(y)=x$.
Hence f is surjective.
Hence f is a bijection.

Exercise 5.

1. Let $x \in \mathbb{R}$. In order for $f(x-1)+2$ to be well defined, we need $x-1 \in \mathbb{R} \backslash\{-1\}$, i.e., $x \in \mathbb{R}^{*}$. Then $f(x-1)+2 \in \mathbb{R}$ as required (for the codomain of g). Conclusion: $D_{g}=\mathbb{R}^{*}$.

We now simplify g : for $x \in \mathbb{R}^{*}$,

$$
\begin{aligned}
g(x) & =f(x-1)+2=\frac{2(x-1)^{2}+2(x-1)+1}{x}+2=\frac{2 x^{2}-4 x+2+2 x-2+1}{x}+2 \\
& =\frac{2 x^{2}-2 x+1}{x}+2=\frac{2 x^{2}+1}{x} \\
& =2 x+\frac{1}{x} .
\end{aligned}
$$

The domain of g is symmetric with respect to the origin. We now show g is odd: let $x \in \mathbb{R}^{*}$. Then

$$
g(-x)=-2 x-\frac{1}{x}=-g(x)
$$

hence g is odd.
2. - g is increasing on $[1 / \sqrt{2},+\infty)$: let $x, y \in[1 / \sqrt{2},+\infty)$ such that $x<y$. Then, by the given hint:

$$
g(x)-g(y)=\frac{(2 x y-1)(x-y)}{x y}
$$

We know that $1 / \sqrt{2} \leq x<y$, hence $1 / 2<x y$ hence $(2 x y-1)>0$. Finally, since $x-y<0$ and $x y>0$ we conclude that $g(x)-g(y)<0$ hence $g(x)<g(y)$.

- g is decreasing on $(0,1 / \sqrt{2}]$: let $x, y \in(0,1 / \sqrt{2}]$ such that $x<y$. This time we have $0<x<y \leq 1 / \sqrt{2}$ so that $x y<1 / 2$ and $(2 x y-1)<0$. We still have $x-y<0$ and $x y>0$ so that $g(x)-g(y)>0$ hence $g(x)>g(y)$.

3. Notice that

$$
\forall x \in \mathbb{R} \backslash\{-1\}, f(x)=g(x+1)-2
$$

so that the graph of f is obtained from that of g by a horizontal translation by 1 (to the left), and by a vertical translation by 2 (downward). See Figure 2

Exercise 6.

- $\left(P_{1}\right)$ is false: $x=y=1 / 2 \in A$ but $x+y=1 \notin A$.
- $\left(P_{2}\right)$ is true: let $x \in A$. We define $y=(1-x) / 2$. We show that $y \in A$ and that $x+y \in A$: since $0<x<1$ we conclude that $0<1-x<1$ and hence $0<(1-x) / 2<1 / 2<1$ so that $y \in A$. Now $x+y=(1+x) / 2$. Since $0<x<1$ we conclude that $1 / 2<(1+x) / 2<1$ hence $(1+x) / 2 \in A$.
- $\left(P_{3}\right)$ is false: its negation is:

$$
\neg\left(P_{3}\right) \quad \forall x \in A, \exists y \in A, x+y \notin A .
$$

which is true: let $x \in A$. Since $0<x<1$, we have $0<1-x<1$. Now set $y=1-x \in A$, and we obtain $x+y=1 \notin A$.

Figure 2 - Graph of the functions f and g (dashed) of Exercise 5 The graph of f is obtained from that of g by a horizontal translation to the left by 1 and a vertical translation, downward, by 2 .

