Exercise 1.

1. Since P has real coefficients,

$$
1+i \text { is a root of } P \Longleftrightarrow 1-i \text { is a root of } P,
$$

we're hence going to perform the long division of P by Q where

$$
\begin{aligned}
& Q: \mathbb{R} \longrightarrow \quad \mathbb{R} \\
& x \longmapsto(x-1-i)(x-1+i)(x-1)=x^{3}-3 x^{2}+4 x-2 .
\end{aligned}
$$

Hence:

$$
\forall x \in \mathbb{R}, P(x)=\left(2 x^{2}-x-1\right) Q(x)+0
$$

The quadratic $2 x^{2}-x-1$ has roots 1 and $-1 / 2$, and we hence conclude that the roots of P (with their multiplicities) are:

- $1+i$ and $1-i$ both of multiplicity 1 ,
- 1 of multiplicity 2 ,
- $-1 / 2$ of multiplicity 1 .
(Note that we have 5 roots counted with their multiplicities, which is consistent with the degree of P).

2. We now deduce the factored form of P in \mathbb{R} and in \mathbb{C} :

$$
\begin{align*}
& P(x)=2\left(x^{2}-2 x+2\right)(x-1)^{2}(x+1 / 2) \\
& P(x)=2(x-1-i)(x-1+i)(x-1)^{2}(x+1 / 2)
\end{align*}
$$

Exercise 2.

1. Let $x \in \mathbb{R}$.
a) We know that tanh is defined on \mathbb{R}, and that the range of \tanh is $(-1,1)$, hence $1-\tanh >0$, so that A is well-defined.

$$
A=\frac{1+\tanh (x)}{1-\tanh (x)}=\frac{1+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}}{1-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}}=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}+\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}-\mathrm{e}^{x}+\mathrm{e}^{-x}}=\frac{2 \mathrm{e}^{x}}{2 \mathrm{e}^{-x}}=\mathrm{e}^{2 x} .
$$

b) Let $n \in \mathbb{N}$. Then:

$$
\left(\frac{1+\tanh (x)}{1-\tanh (x)}\right)^{n}=A^{n}=\left(\mathrm{e}^{2 x}\right)^{n}=\mathrm{e}^{2 n x}
$$

If we replace x by $n x$ in A we obtain:

$$
\frac{1+\tanh (n x)}{1-\tanh (n x)}=\mathrm{e}^{2 n x}
$$

hence the result.
2. a) Let $x \in \mathbb{R}$. Then, since the domain of arccosh is $[1,+\infty)$:

$$
B \text { is well defined } \Longleftrightarrow x \neq 0 \wedge \frac{1}{2}\left(x+\frac{1}{x}\right) \geq 1
$$

We split the problem in two cases:

- If $x>0$ then

$$
\frac{1}{2}\left(x+\frac{1}{x}\right) \geq 1 \Longleftrightarrow x^{2}+1 \geq 2 x \Longleftrightarrow x^{2}-2 x+1 \geq 0 \Longleftrightarrow(x-1)^{2} \geq 0
$$

and we know that $(x-1)^{2} \geq 0$ hence B is well defined in this case.

- If $x<0$ then $x+1 / x<0$ so that $(x+1 / x) / 2 \notin[1,+\infty)$ hence B is not defined in this case.

Conclusion: $J=\mathbb{R}_{+}^{*}$.
b) Let $x \in J$. Define $y=\ln (x)$ so that $x=\mathrm{e}^{y}$. Then:

$$
B=\operatorname{arccosh}\left(\frac{1}{2}\left(\mathrm{e}^{y}+\mathrm{e}^{-y}\right)\right)=\operatorname{arccosh}(\cosh (y))=|y|=|\ln (x)| .
$$

Exercise 3.

1. - $P_{1} \neq \emptyset: 0_{E}(0)+0_{E}(1)=0+0=0$ hence $0_{E} \in P_{1}$.

- Let $P, Q \in P_{1}$ and let $\lambda \in \mathbb{R}$. Set $R=\lambda P+Q$. Then:

$$
R(0)+R(1)=\lambda P(0)+Q(0)+\lambda P(1)+Q(1)=\lambda(P(0)+P(1))+Q(0)+Q(1)=\lambda \times 0+0=0
$$

hence $R \in P_{1}$.
Hence P_{1} is a subspace of E.
2. Yes: we know that the intersection of subspaces of E is a subspace of E.
3. Let $P \in P_{1} \cap P_{2}$. Since $P \in P_{2}$, there exists $a, b, c \in \mathbb{R}$ such that $P=a+b X+c X^{2}$. Since $P \in P_{1}$ we must have

$$
P(0)+P(1)=a+a+b+c=2 a+b+c=0
$$

Now,

$$
\begin{aligned}
\{2 a+b+c=0 & \Longleftrightarrow\left\{\begin{array}{l}
a=-\frac{1}{2} b-\frac{1}{2} c \\
b=b \\
c=c
\end{array}\right. \\
& \Longleftrightarrow P=b\left(-\frac{1}{2}+X\right)+c\left(-\frac{1}{2}+X^{2}\right)
\end{aligned}
$$

We hence set:

$$
p=-\frac{1}{2}+X \quad \text { and } \quad q=-\frac{1}{2}+X^{2}
$$

and we have $P_{1} \cap P_{2}=\operatorname{Span}\{p, q\}$.

Exercise 4.

1. To determine the rank of (S) we perform the descent of the Gaussian elimination:

$$
\left\{\begin{array} { c }
{ x + y + z = m } \\
{ x + 2 y + 3 z = 1 } \\
{ 2 x + 5 y + 8 z = 2 }
\end{array} \underset { \substack { R _ { 2 } \\
R _ { 3 } \leftarrow R _ { 3 } - 2 R _ { 1 } } } { \Longleftrightarrow } \quad \left\{\begin{array}{r}
x+y+z=m \\
y+2 z=1-m \\
3 y+6 z=2-2 m
\end{array} \quad R_{3} \leftarrow \leftarrow R_{3}-3 R_{2} . ~\left\{\begin{array}{r}
x+y+z=m \\
y+2 z=1-m \\
0=-1+m
\end{array}\right.\right.\right.
$$

Hence the rank of (S) is 2 .
We now conclude that system (S) possesses solutions if and only if $m=1$, in which case:

$$
(S) \Longleftrightarrow\left\{\begin{array} { r }
{ x + y + z = 1 } \\
{ y + 2 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=1-y-z=1+z \\
y=-2 z \\
z=z
\end{array} \quad \Longleftrightarrow(x, y, z)=(1,0,0)+z(1,-2,1)\right.\right.
$$

2. a)

$$
a \in \operatorname{Span}\{u, v, w\} \Longleftrightarrow \exists x, y, z \in \mathbb{R}, a=x u+y v+z w \Longleftrightarrow(x, y, z) \text { are solutions of System }(S)
$$

By Question 1 we conclude that

$$
a \in \operatorname{Span}\{u, v, w\} \Longleftrightarrow m=1
$$

b) Since $(0,1,2) \notin \operatorname{Span}\{u, v, w\}$ (this is the vector a in the case $m=0 \neq 1$) we conclude that $\operatorname{Span}\{u, v, w\} \neq$ \mathbb{R}^{3}, hence (u, v, w) is not a generating family of \mathbb{R}^{3}.
c) i) System $\left(S^{\prime}\right)$ is just System (S) with nil constant terms (i.e., System $\left(S^{\prime}\right)$ is the associated homogeneous system $), \operatorname{rk}\left(S^{\prime}\right)=\operatorname{rk}(S)=2$.
ii) Since System $\left(S^{\prime}\right)$ is homogeneous, it is compatible (hence possesses solutions, at least the nil solution); moreover it has 3 unknowns and is of rank 2, hence there's an infinite number of solutions that can be expressed in terms of 1 parameter.
iii) Checking whether (u, v, w) is an independent family reads as: let $x, y, z \in \mathbb{R}^{3}$ such that $x u+y v+z w=$ 0_{E}. By writing the system associated to this equation yields System (S^{\prime}) which we know possesses other solutions than $(x, y, z)=(0,0,0)$, hence (u, v, w) is not an independent family.

Exercise 5.

1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

$$
\begin{aligned}
& \alpha a+\beta b=\gamma c+\delta d \quad \Longleftrightarrow a+\beta b-\gamma c-\delta d=0_{E} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\alpha+\beta-\gamma-\delta=0 \\
\alpha+\beta+\gamma-\delta=0 \\
\alpha \\
-\delta=0 \\
-\delta=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\substack{ \\
R_{3} \\
R_{4} \leftarrow R_{4}-R_{2}}}{\Longleftrightarrow} \text { - } \begin{aligned}
&-\delta=0 \\
&=0 \\
& \alpha+\gamma \\
&-\gamma-\delta=0 \\
&-2 \gamma=0
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
\beta \quad \beta=\alpha=\delta=\beta=0 .
\end{aligned} \quad \Longleftrightarrow \quad \gamma=\alpha
\end{aligned}
$$

Let $u \in F \cap G$. Since $u \in F=\operatorname{Span}\{a, b\}$, there exists $\alpha, \beta \in \mathbb{R}$ such that $u=\alpha a+\beta b$. Since $u \in G=$ $\operatorname{Span}\{c, d\}$, there exists $\gamma, \delta \in \mathbb{R}$ such that $u=\gamma c+\delta d$. Hence we must have

$$
\alpha a+\beta b=\gamma c+\delta d
$$

hence $\alpha=\beta=0$ which yields $u=\alpha a+\beta b=0 a+0 b=0_{E}$. We conclude that $F \cap G=\left\{0_{E}\right\}$.
2. a) With $x, y, z, t, \alpha, \beta, \gamma, \delta$ as given,

$$
\begin{aligned}
& u=\alpha a+\beta b+\gamma c+\delta d \quad \Longleftrightarrow \quad\left\{\begin{array}{r}
\alpha+\beta+\gamma+\delta=x \\
\alpha+\beta-\gamma+\delta=y \\
\alpha+\delta=z \\
\beta+\delta=t
\end{array}\right. \\
& \underset{R_{1}}{\underset{R_{1}}{\leftrightarrow} \text { in 1st position }} \Longleftrightarrow \underset{R_{4}}{\Longleftrightarrow} \quad\left\{\begin{array}{r}
\beta=t \\
\beta+\alpha-\gamma+\delta=y \\
\alpha+\delta=z \\
\beta+\alpha+\gamma+\delta=x
\end{array}\right.
\end{aligned}
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
\beta=t-\delta=\frac{1}{2} x+\frac{1}{2} y-z \\
\alpha=y-t+\gamma=\frac{1}{2} x+\frac{1}{2} y-t \\
\delta=z-y+t-\gamma=-\frac{1}{2} x-\frac{1}{2} y+z+t \\
\gamma=\frac{1}{2} x-\frac{1}{2} y
\end{array}\right.
$$

We conclude that there's a unique solution, namely:

$$
\alpha=\frac{1}{2} x+\frac{1}{2} y-t \quad \beta=\frac{1}{2} x+\frac{1}{2} y-z \quad \gamma=\frac{1}{2} x-\frac{1}{2} y \quad \delta=-\frac{1}{2} x-\frac{1}{2} y+z+t
$$

We showed that $\operatorname{Span}\{a, b, c, d\}=E$, hence that (a, b, c, d) is a generating family of E.
b) Let $u=(x, y, z, t)$ and let $\alpha, \beta, \gamma, \delta$ as in the previous question. We know that $u=\alpha a+\beta b+\gamma c+\delta d$, and since $F=\operatorname{Span}\{a, b\}$ and $G=\operatorname{Span}\{c, d\}$ we set:

$$
u_{F}=\alpha a+\beta b \in F, \quad u_{G}=\gamma c+\delta d \in G
$$

and we indeed have $u=u_{F}+u_{G}$. More precisely, the values of u_{F} and u_{G} are:

$$
\begin{aligned}
u_{F} & =\left(\frac{x+y}{2}-t, \frac{x+y}{2}-t, \frac{x+y}{2}-t, 0\right)+\left(\frac{x+y}{2}-z, \frac{x+y}{2}-z, 0, \frac{x+y}{2}-z\right) \\
& =\left(x+y-z-t, x+y-z-t, \frac{x+y}{2}-t, \frac{x+y}{2}-z\right) \\
u_{G} & =\left(\frac{x-y}{2},-\frac{x-y}{2}, 0,0\right)+\left(-\frac{x+y}{2}+z+t,-\frac{x+y}{2}+z+t,-\frac{x+y}{2}+z+t,-\frac{x+y}{2}+z+t\right) \\
& =\left(-y+z+t,-x+z+t,-\frac{x+y}{2}+z+t-\frac{x+y}{2}+z+t\right) .
\end{aligned}
$$

c) We know that $F+G \subset E$. The inclusion $E \subset F+G$ is a direct consequence of Question b: let $u \in E$. By Question b there exists $u_{F} \in F$ and $u_{G} \in G$ such that $u=u_{F}+u_{G}$, hence $u \in F+G$. We conclude that $E=F+G$.
3. Yes: the direct sum $F \oplus G$ is valid since F and G are independent (Question 1) and from Question 2 we know that $E=F+G$. Hence $E=F \oplus G$.

