

No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Define:

$$P: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto 2x^5 - 7x^4 + 10x^3 - 5x^2 - 2x + 2$$

- 1. You're given that 1 + i and 1 are roots of P. Determine all the roots of P and their multiplicities.
- 2. Give the factored form of P in \mathbb{R} and in \mathbb{C} .

Exercise 2. The two questions of this exercise are independent of each other.

- 1. Let $x \in \mathbb{R}$.
 - a) Check that the expression

$$A = \frac{1 + \tanh(x)}{1 - \tanh(x)}$$

is well-defined, and simplify A as much as you can (hint: use the exponential).

b) Deduce that:

$$\forall n \in \mathbb{N}, \ \left(\frac{1+\tanh(x)}{1-\tanh(x)}\right)^n = \frac{1+\tanh(nx)}{1-\tanh(nx)}.$$

2. a) Determine the maximal subset J of \mathbb{R} such that for all $x \in J$ the expression

$$B = \operatorname{arccosh}\left(\frac{1}{2}\left(x + \frac{1}{x}\right)\right)$$

is well-defined.

b) For $x \in J$, simplify B as much as you can.

Exercise 3. Let $E = \mathbb{R}[X]$ be the vector space of all polynomials with real coefficients and indeterminate X. Let

$$P_1 = \{ P \in E \mid P(0) + P(1) = 0 \},$$

and

$$P_2 = \{ P \in E \mid \deg(P) \le 2 \} = \operatorname{Span}\{1, X, X^2 \}$$

You're given that P_2 is a subspace of E.

- 1. Show that P_1 is a subspace of E.
- 2. Is $P_1 \cap P_2$ a subspace of E?
- 3. Show that there exists $p, q \in E$ such that $P_1 \cap P_2 = \text{Span}\{p, q\}$ (and determine such p and q).

Exercise 4.

1. Let $m \in \mathbb{R}$. What is the rank of the following system?

(S)
$$\begin{cases} x + y + z = m \\ x + 2y + 3z = 1 \\ 2x + 5y + 8z = 2 \end{cases}$$

Solve System (S).

2. Let $E = \mathbb{R}^3$, let $m \in \mathbb{R}$ and define:

$$u = (1, 1, 2),$$
 $v = (1, 2, 5),$ $w = (1, 3, 8),$ $a = (m, 1, 2).$

Note that some answers to the following questions might depend on the value of m.

- a) Do we have $a \in \text{Span}\{u, v, w\}$?
- b) Is the family (u, v, w) a generating family of \mathbb{R}^3 ?
- c) i) What is the rank of the following linear system?

(S')
$$\begin{cases} x + y + z = 0 \\ x + 2y + 3z = 0 \\ 2x + 5y + 8z = 0 \end{cases}$$

- ii) Without solving System (S'), determine the number of solutions of System (S').
- iii) Is the family (u, v, w) an independent family?

Exercise 5. Let $E = \mathbb{R}^4$ and define:

$$a = (1, 1, 1, 0),$$
 $b = (1, 1, 0, 1),$ $c = (1, -1, 0, 0),$ $d = (1, 1, 1, 1),$ $F = \operatorname{Span}\{a, b\},$ $G = \operatorname{Span}\{c, d\}.$

1. Find all the real numbers α , β , γ , δ such that

$$\alpha a + \beta b = \gamma c + \delta d$$
.

Deduce that $F \cap G = \{0_E\}$.

- 2. We now show that E = F + G.
 - a) Let $u=(x,y,z,t)\in E$. Show that there exists $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ such that

$$u = \alpha a + \beta b + \gamma c + \delta d.$$

Can we conclude that the family (a, b, c, d) is a generating family of E?

- b) Use the result of the previous question to find $u_F \in F$ and $u_G \in G$ such that $u = u_F + u_G$. How many possibilities are there for u_F and u_G ?
- c) Is this enough to conclude that E = F + G?
- 3. Do we have $E = F \oplus G$?

We recall the definition of an independent family and a generating family (these notions are used in Exercises 4 and 5): Let E be a vector space over K and let $\mathscr{F} = (u_1, \ldots, u_n)$ be a family of n vectors of E (with $n \ge 1$).

· We say that F is independent if:

$$\forall \lambda_1, \ldots, \lambda_n \in \mathbb{K}, \ (\lambda_1 u_1 + \cdots + \lambda_n u_n = 0_E \implies \lambda_1 = \cdots = \lambda_n = 0)$$

• We say that \mathcal{F} is a generating family of E if $Span\{u_1, \ldots, u_n\} = E$.