
Math Scan First INSA Lyon – 2023-2024

Exam no 1 – 1 hour 30 minutes

Warm-up exercises (3 points)

Exercise 1. Let n ∈ N. Compute the following sum (justify the result):
n∑

j=0
2j

(
n

j

)
.

Solution. • Using binomial theorem, we have ∀a, b ∈ R, (a+ b)n =
n∑

j=0

(
n

j

)
ajbn−j.

• In particular, for a = 2, b = 1 we obtain 3n =
n∑

j=0

(
n

j

)
2j1n−j

• Then
n∑

j=0
2j

(
n

j

)
= 3n.

Exercise 2. Sketch the graph of the function f : x 7→ −|x+ 3|.

Solving equations (3 points)
Exercise 3. Solve in R the following inequality:

√
x ≤ 2− x.

Solution. • Solving
√
x ≤ 2− x implies x ≥ 0 and x ≤ 2 in order to be defined.

• Assume x ∈ [0, 2]. Then
√
x ≤ 2− x =⇒ x ≤ 4− 4x+ x2 ⇐⇒ x2 − 5x+ 4 ≥ 0.

• We solve x2 − 5x+ 4 = 0: ∆ = 25− 16 = 9, then x = 5
2 ±

3
2 .

• Therefore x2 − 5x+ 4 ≥ 0 for x ∈ (−∞, 1] ∪ [4,+∞).

• Combining with earlier constraints we obtain solutions for x ∈ [0, 1].
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Exercise 4. Solve in R the following equation: cos
(
x+ π

4

)
=
√

3
2 .

Solution. • Using properties of known angles, we deduce that x+ π

4 = ±π6 + 2πk, k ∈ Z

• We obtain S = {−5π
12 ,−

π

12}+ 2πZ

Strategies of proof (8 points)
Exercise 5.

1. Show that ∀n ∈ N∗, − 1
n

+ 1
(n+ 1)2 + 1

n+ 1 ≤ 0.

2. Use previous question to show that ∀n ∈ N∗,
n∑

k=1

1
k2 ≤ 2− 1

n
.

Solution. • Using a direct proof: given n ≥ 1,

− 1
n

+ 1
(n+ 1)2 + 1

n+ 1 = − (n+ 1)2

n(n+ 1)2 + n

n(n+ 1)2 + n(n+ 1)
n(n+ 1)2 = − 1

n(n+ 1)2 ≤ 0 since

n(n+ 1)2 > 0.

• Let’s prove by induction ∀n ∈ N∗ P (n) is true, where P (n) :=
n∑

k=1

1
k2 ≤ 2− 1

n
.

For n = 1:
1∑

k=1

1
k2 = 1 ≤ 2− 1. Then P (1) is true.

Given n ≥ 1, assume P (n) is true. Let us show that P (n+ 1) is true.
n+1∑
k=1

1
k2 =

n∑
k=1

1
k2 + 1

(n+ 1)2 ≤ 2− 1
n

+ 1
(n+ 1)2 (using P (n)).

Using question 1 we have− 1
n

+ 1
(n+ 1)2 ≤ −

1
n+ 1 , therefore

n+1∑
k=1

1
k2 ≤ 2 − 1

n+ 1 , which

concludes the proof.

Exercise 6. The goal is to find all functions f : R→ R so that:

∀(x, y) ∈ R2, |f(x) + f(y)| = |x+ y|. (E)

1. (a) We define f1 :
{

R → R
x 7→ x

. Show that f1 satisfies (E).

(b) We define f2 :
{

R → R
x 7→ −x . Show that f2 satisfies (E).

2. Let be f : R→ R.

(a) Show that if [(∀x ∈ R, f(x) = x) or (∀x ∈ R, f(x) = −x)], then ∀x ∈ R, |f(x)| = |x|.
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(b) Write the negation of [(∀x ∈ R, f(x) = x) or (∀x ∈ R, f(x) = −x)].
(c) Show that if (∀x ∈ R, |f(x)| = |x|), then [∀x ∈ R, (f(x) = x or f(x) = −x)] (read

carefully).

3. Let be f : R→ R a function satisfying (E).

(a) Show that f(0) = 0.

(b) Show that ∀x ∈ R, |f(x)| = |x|.
(c) Show by contradiction that we have [(∀x ∈ R, f(x) = x) or (∀x ∈ R, f(x) = −x)]

4. What is the set of functions satisfying (E) then ?

Solution. • ∀x, y, |x+ y| = |x+ y| so f1 satisfies (E).

• ∀x, y, | − x+−y| = |x+ y| so f2 satisfies (E).

• If ∀x ∈ R, f(x) = x then |f(x)| = x, or if ∀x ∈ R, f(x) = −x then |f(x)| = | − x| = |x|. So if
∀x ∈ R, f(x) = x or ∀x ∈ R, f(x) = −x then |f(x)| = |x|.

• ∃x ∈ R, f(x) 6= x and ∃x′ ∈ R, f(x′) 6= −x′.

• Assume ∀x ∈ R, |f(x)| = |x|. Then

|f(x)| =

x if x ≥ 0,
x if − x < 0

⇐⇒


f(x) = x if x ≥ 0, f(x) ≥ 0,
f(x) = −x if x ≥ 0, f(x) < 0,
f(x) = −x if x < 0, f(x) ≥ 0,
f(x) = x if x < 0, f(x) < 0

then ∀x ∈ R, f(x) takes only values x or −x, therefore ∀x ∈ R, (f(x) = x or f(x) = −x).

• Using (E) for x = 0 = y, |f(0) + f(0)| = 0 =⇒ f(0) = 0.

• Using (E) for x = y, |f(x) + f(x)| = |x+ x| ⇐⇒ |f(x)| = |x|.

• Assume [(∀x∈R, f(x) = x) or (∀x ∈ R, f(x) = −x)] is false. Using 2)b) ∃x0 ∈ R, f(x0) 6= x0
and ∃x1 ∈ R, f(x1) 6= −x1. Since |f(x)| = |x| by 3)b), from question 2)c) we deduce that
∀x ∈ R, (f(x) = x or f(x) = −x). Then f(x0) = −x0 and f(x!) = x1 and

|f(x0) + f(x1)| = |x0 + x1| ⇐⇒ | − x0 + x1| = |x0 + x1|

=⇒


−x0 + x1 = x0 + x1 if − x0 + x1 ≥ 0, x0 + x1 ≥ 0,
−x0 + x1 = −x0 − x1 if − x0 + x1 ≥ 0, x0 + x1 < 0,
x0 − x1 = x0 + x1 if − x0 + x1 < 0, x0 + x1 ≥ 0,
x0 − x1 = −x0 − x1 if − x0 + x1 < 0, x0 + x1 < 0

=⇒


x0 = 0 if − x0 + x1 ≥ 0, x0 + x1 ≥ 0,
x1 = 0 if − x0 + x1 ≥ 0, x0 + x1 < 0,
x1 = 0 if − x0 + x1 < 0, x0 + x1 ≥ 0,
x0 = 0 if − x0 + x1 < 0, x0 + x1 < 0

however f(0) = ±0 which contradicts the definition of x0, x1. Therefore [(∀x ∈ R, f(x) = x) or
(∀x ∈ R, f(x) = −x)] is true.
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• Using 3)c) we conclude that f satisfying (E) =⇒ ∀x ∈ R, f(x) = |x| =⇒ f = f1 or f = f2.
The S = {f1, f2}.

Properties of functions (6 points)
Exercise 7. Let E be a non-empty set, and we denote two functions f : E → E, g : E → E. We
define h : E → E so that: ∀x ∈ E, h(x) = g(f(x) + x).

1. (a) Using quantifiers, write the proposition “h is injective”, and “h is surjective”.

(b) If IdE + f is injective and if g is injective, can we conclude that h is injective ? Justify
your answer (we expect a clear reasoning).

2. (a) Let P,Q,R be three statements. Give the contrapositive of : (P ∨Q) =⇒ R.

(b) Consider the proposition

(P0) ≡ [ IdE + f is surjective or if g is surjective] =⇒ h is surjective

Is (P0) true ? Justify your answer (we expect a clear reasoning).

Solution. • ∀x, x′ ∈ E, h(x) = h(x′) =⇒ x = x′. In other words ∀x, x′ ∈ E, g(x + f(x)) =
g(x′ + f(x′)) =⇒ x = x′

• ∀y ∈ E,∃x ∈ E, h(x) = y. In other words ∀y ∈ E,∃x ∈ E, g(x+ f(x)) = y

• Let x, x′ ∈ E such that g(x + f(x)) = g(x′ + f(x′)). Since g is injective, then x + f(x) =
x′+ f(x′)⇐⇒ (IdE + f)(x) = (IdE + f)(x′). Since IdE + f is injective, we conclude that x = x′

therefore h is injective.

• ¬R =⇒ (¬P ∧ ¬Q)

• By case disjunction.
If IdE + f surjective but g is not surjective: ∀z ∈ E,∃x ∈ E, x+ f(x) = z then g(x+ f(x)) =
g(z). However ∃y ∈ E,∀z ∈ E, g(z) 6= y, other words g(x+f(x)) 6= y. Then h is not surjective.

If IdE + f is not surjective but g is surjective: ∃z′ ∈ E,∀x ∈ E, x + f(x) 6= z′. Since
∀x ∈ E, x + f(x) ∈ E, by surjectivity of g, ∃z ∈ E, g(z) = x + f(x) so g(z) 6= z′ which
contradicts with g being surjective. So the statement [IdE+f is not surjective but g is surjective]
is false: either it’s the case above, or both are not surjective. In all cases we conclude that h is
not surjective. So (P0) is not true.

4


