Exam n ${ }^{\circ}$ 1-1 hour 30 minutes

Warm-up exercises (3 points)

Exercise 1. Let $n \in \mathbb{N}$. Compute the following sum (justify the result): $\sum_{j=0}^{n} 2^{j}\binom{n}{j}$.
Solution. - Using binomial theorem, we have $\forall a, b \in \mathbb{R},(a+b)^{n}=\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}$.

- In particular, for $a=2, b=1$ we obtain $3^{n}=\sum_{j=0}^{n}\binom{n}{j} 2^{j} 1^{n-j}$
- Then $\sum_{j=0}^{n} 2^{j}\binom{n}{j}=3^{n}$.

Exercise 2. Sketch the graph of the function $f: x \mapsto-|x+3|$.

Solving equations (3 points)

Exercise 3. Solve in \mathbb{R} the following inequality: $\sqrt{x} \leq 2-x$.

Solution. - Solving $\sqrt{x} \leq 2-x$ implies $x \geq 0$ and $x \leq 2$ in order to be defined.

- Assume $x \in[0,2]$. Then $\sqrt{x} \leq 2-x \Longrightarrow x \leq 4-4 x+x^{2} \Longleftrightarrow x^{2}-5 x+4 \geq 0$.
- We solve $x^{2}-5 x+4=0: \Delta=25-16=9$, then $x=\frac{5}{2} \pm \frac{3}{2}$.
- Therefore $x^{2}-5 x+4 \geq 0$ for $x \in(-\infty, 1] \cup[4,+\infty)$.
- Combining with earlier constraints we obtain solutions for $x \in[0,1]$.

Exercise 4. Solve in \mathbb{R} the following equation: $\cos \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}$.
Solution. - Using properties of known angles, we deduce that $x+\frac{\pi}{4}= \pm \frac{\pi}{6}+2 \pi k, k \in \mathbb{Z}$

- We obtain $S=\left\{-\frac{5 \pi}{12},-\frac{\pi}{12}\right\}+2 \pi \mathbb{Z}$

Strategies of proof (8 points)

Exercise 5.

1. Show that $\forall n \in \mathbb{N}^{*},-\frac{1}{n}+\frac{1}{(n+1)^{2}}+\frac{1}{n+1} \leq 0$.
2. Use previous question to show that $\forall n \in \mathbb{N}^{*}, \sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}$.

Solution. - Using a direct proof: given $n \geq 1$,
$-\frac{1}{n}+\frac{1}{(n+1)^{2}}+\frac{1}{n+1}=-\frac{(n+1)^{2}}{n(n+1)^{2}}+\frac{n}{n(n+1)^{2}}+\frac{n(n+1)}{n(n+1)^{2}}=-\frac{1}{n(n+1)^{2}} \leq 0$ since $n(n+1)^{2}>0$.

- Let's prove by induction $\forall n \in \mathbb{N}^{*} P(n)$ is true, where $P(n):=\sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}$.

For $n=1: \sum_{k=1}^{1} \frac{1}{k^{2}}=1 \leq 2-1$. Then $P(1)$ is true.
Given $n \geq 1$, assume $P(n)$ is true. Let us show that $P(n+1)$ is true.
$\sum_{k=1}^{n+1} \frac{1}{k^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n}+\frac{1}{(n+1)^{2}}(\operatorname{using} P(n))$.
Using question 1 we have $-\frac{1}{n}+\frac{1}{(n+1)^{2}} \leq-\frac{1}{n+1}$, therefore $\sum_{k=1}^{n+1} \frac{1}{k^{2}} \leq 2-\frac{1}{n+1}$, which concludes the proof.

Exercise 6. The goal is to find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ so that:

$$
\begin{equation*}
\forall(x, y) \in \mathbb{R}^{2},|f(x)+f(y)|=|x+y| \tag{E}
\end{equation*}
$$

1. (a) We define $f_{1}:\left\{\begin{array}{rll}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \mapsto & x\end{array}\right.$. Show that f_{1} satisfies (E).
(b) We define $f_{2}:\left\{\begin{array}{rll}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto & -x\end{array}\right.$. Show that f_{2} satisfies (E).
2. Let be $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Show that if $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$, then $\forall x \in \mathbb{R},|f(x)|=|x|$.
(b) Write the negation of $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$.
(c) Show that if $(\forall x \in \mathbb{R},|f(x)|=|x|)$, then $[\forall x \in \mathbb{R},(f(x)=x$ or $f(x)=-x)]$ (read carefully).
3. Let be $f: \mathbb{R} \rightarrow \mathbb{R}$ a function satisfying (E).
(a) Show that $f(0)=0$.
(b) Show that $\forall x \in \mathbb{R},|f(x)|=|x|$.
(c) Show by contradiction that we have $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$
4. What is the set of functions satisfying (E) then ?

Solution. $\quad \bullet \forall x, y,|x+y|=|x+y|$ so f_{1} satisfies (E).

- $\forall x, y,|-x+-y|=|x+y|$ so f_{2} satisfies (E).
- If $\forall x \in \mathbb{R}, f(x)=x$ then $|f(x)|=x$, or if $\forall x \in \mathbb{R}, f(x)=-x$ then $|f(x)|=|-x|=|x|$. So if $\forall x \in \mathbb{R}, f(x)=x$ or $\forall x \in \mathbb{R}, f(x)=-x$ then $|f(x)|=|x|$.
- $\exists x \in \mathbb{R}, f(x) \neq x$ and $\exists x^{\prime} \in \mathbb{R}, f\left(x^{\prime}\right) \neq-x^{\prime}$.
- Assume $\forall x \in \mathbb{R},|f(x)|=|x|$. Then

$$
|f(x)|=\left\{\begin{array} { l }
{ x \quad \text { if } x \geq 0 , } \\
{ x \quad \text { if } - x < 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
f(x)=x \quad \text { if } x \geq 0, f(x) \geq 0 \\
f(x)=-x \quad \text { if } x \geq 0, f(x)<0 \\
f(x)=-x \quad \text { if } x<0, f(x) \geq 0 \\
f(x)=x \quad \text { if } x<0, f(x)<0
\end{array}\right.\right.
$$

then $\forall x \in \mathbb{R}, f(x)$ takes only values x or $-x$, therefore $\forall x \in \mathbb{R},(f(x)=x$ or $f(x)=-x)$.

- Using (E) for $x=0=y,|f(0)+f(0)|=0 \Longrightarrow f(0)=0$.
- Using (E) for $x=y,|f(x)+f(x)|=|x+x| \Longleftrightarrow|f(x)|=|x|$.
- Assume $\left[\left(\forall x_{\in} \mathbb{R}, f(x)=x\right)\right.$ or $\left.(\forall x \in \mathbb{R}, f(x)=-x)\right]$ is false. Using 2)b) $\exists x_{0} \in \mathbb{R}, f\left(x_{0}\right) \neq x_{0}$ and $\exists x_{1} \in \mathbb{R}, f\left(x_{1}\right) \neq-x_{1}$. Since $|f(x)|=|x|$ by 3$) \mathrm{b}$), from question 2)c) we deduce that $\forall x \in \mathbb{R},(f(x)=x$ or $f(x)=-x)$. Then $f\left(x_{0}\right)=-x_{0}$ and $f\left(x_{!}\right)=x_{1}$ and

$$
\begin{aligned}
\left|f\left(x_{0}\right)+f\left(x_{1}\right)\right|=\left|x_{0}+x_{1}\right| & \Longleftrightarrow\left|-x_{0}+x_{1}\right|=\left|x_{0}+x_{1}\right| \\
& \Longrightarrow\left\{\begin{array}{l}
-x_{0}+x_{1}=x_{0}+x_{1} \quad \text { if }-x_{0}+x_{1} \geq 0, x_{0}+x_{1} \geq 0, \\
-x_{0}+x_{1}=-x_{0}-x_{1} \quad \text { if }-x_{0}+x_{1} \geq 0, x_{0}+x_{1}<0, \\
x_{0}-x_{1}=x_{0}+x_{1} \quad \text { if }-x_{0}+x_{1}<0, x_{0}+x_{1} \geq 0, \\
x_{0}-x_{1}=-x_{0}-x_{1} \quad \text { if }-x_{0}+x_{1}<0, x_{0}+x_{1}<0
\end{array}\right. \\
& \Longrightarrow \begin{cases}x_{0}=0 & \text { if }-x_{0}+x_{1} \geq 0, x_{0}+x_{1} \geq 0 \\
x_{1}=0 & \text { if }-x_{0}+x_{1} \geq 0, x_{0}+x_{1}<0, \\
x_{1}=0 & \text { if }-x_{0}+x_{1}<0, x_{0}+x_{1} \geq 0 \\
x_{0}=0 & \text { if }-x_{0}+x_{1}<0, x_{0}+x_{1}<0\end{cases}
\end{aligned}
$$

however $f(0)= \pm 0$ which contradicts the definition of x_{0}, x_{1}. Therefore $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$ is true.

- Using 3)c) we conclude that f satisfying $(E) \Longrightarrow \forall x \in \mathbb{R}, f(x)=|x| \Longrightarrow f=f_{1}$ or $f=f_{2}$. The $S=\left\{f_{1}, f_{2}\right\}$.

Properties of functions (6 points)

Exercise 7. Let E be a non-empty set, and we denote two functions $f: E \rightarrow E, g: E \rightarrow E$. We define $h: E \rightarrow E$ so that: $\forall x \in E, h(x)=g(f(x)+x)$.

1. (a) Using quantifiers, write the proposition " h is injective", and " h is surjective".
(b) If $\operatorname{Id}_{E}+f$ is injective and if g is injective, can we conclude that h is injective ? Justify your answer (we expect a clear reasoning).
2. (a) Let P, Q, R be three statements. Give the contrapositive of : $(P \vee Q) \Longrightarrow R$.
(b) Consider the proposition

$$
\left(P_{0}\right) \equiv\left[\operatorname{Id}_{E}+f \text { is surjective or if } g \text { is surjective }\right] \Longrightarrow h \text { is surjective }
$$

Is $\left(P_{0}\right)$ true ? Justify your answer (we expect a clear reasoning).
Solution. - $\forall x, x^{\prime} \in E, h(x)=h\left(x^{\prime}\right) \Longrightarrow x=x^{\prime}$. In other words $\forall x, x^{\prime} \in E, g(x+f(x))=$ $g\left(x^{\prime}+f\left(x^{\prime}\right)\right) \Longrightarrow x=x^{\prime}$

- $\forall y \in E, \exists x \in E, h(x)=y$. In other words $\forall y \in E, \exists x \in E, g(x+f(x))=y$
- Let $x, x^{\prime} \in E$ such that $g(x+f(x))=g\left(x^{\prime}+f\left(x^{\prime}\right)\right)$. Since g is injective, then $x+f(x)=$ $x^{\prime}+f\left(x^{\prime}\right) \Longleftrightarrow\left(\operatorname{Id}_{E}+f\right)(x)=\left(\operatorname{Id}_{E}+f\right)\left(x^{\prime}\right)$. Since $\operatorname{Id}_{E}+f$ is injective, we conclude that $x=x^{\prime}$ therefore h is injective.
- $\neg R \Longrightarrow(\neg P \wedge \neg Q)$
- By case disjunction.

If $\operatorname{Id}_{E}+f$ surjective but g is not surjective: $\forall z \in E, \exists x \in E, x+f(x)=z$ then $g(x+f(x))=$ $g(z)$. However $\exists y \in E, \forall z \in E, g(z) \neq y$, other words $g(x+f(x)) \neq y$. Then h is not surjective.

If $\operatorname{Id}_{E}+f$ is not surjective but g is surjective: $\exists z^{\prime} \in E, \forall x \in E, x+f(x) \neq z^{\prime}$. Since $\forall x \in E, x+f(x) \in E$, by surjectivity of $g, \exists z \in E, g(z)=x+f(x)$ so $g(z) \neq z^{\prime}$ which contradicts with g being surjective. So the statement $\left[\operatorname{Id}_{E}+f\right.$ is not surjective but g is surjective $]$ is false: either it's the case above, or both are not surjective. In all cases we conclude that h is not surjective. So $\left(P_{0}\right)$ is not true.

