Exam nº 1 – 1 hour 30 minutes

Warm-up exercises (3 points)

Exercise 1. Let $n \in \mathbb{N}$. Compute the following sum (justify the result): $\sum_{j=0}^{n} 2^{j} \binom{n}{j}$.

Solution. • Using binomial theorem, we have $\forall a, b \in \mathbb{R}$, $(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}$.

- In particular, for a = 2, b = 1 we obtain $3^n = \sum_{j=0}^n \binom{n}{j} 2^j 1^{n-j}$
- Then $\sum_{j=0}^{n} 2^{j} \binom{n}{j} = 3^{n}$.

Exercise 2. Sketch the graph of the function $f: x \mapsto -|x+3|$.

Solving equations (3 points)

Exercise 3. Solve in \mathbb{R} the following inequality: $\sqrt{x} \leq 2 - x$.

• Solving $\sqrt{x} \le 2 - x$ implies $x \ge 0$ and $x \le 2$ in order to be defined.

- Assume $x \in [0, 2]$. Then $\sqrt{x} \le 2 x \Longrightarrow x \le 4 4x + x^2 \Longleftrightarrow x^2 5x + 4 \ge 0$.
- We solve $x^2 5x + 4 = 0$: $\Delta = 25 16 = 9$, then $x = \frac{5}{2} \pm \frac{3}{2}$.
- Therefore $x^2 5x + 4 \ge 0$ for $x \in (-\infty, 1] \cup [4, +\infty)$.
- Combining with earlier constraints we obtain solutions for $x \in [0, 1]$.

Г		
L		
L		

Exercise 4. Solve in \mathbb{R} the following equation: $\cos\left(x+\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$.

Solution. • Using properties of known angles, we deduce that $x + \frac{\pi}{4} = \pm \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}$

• We obtain
$$S = \{-\frac{5\pi}{12}, -\frac{\pi}{12}\} + 2\pi\mathbb{Z}$$

Strategies of proof (8 points)

Exercise 5.

1. Show that $\forall n \in \mathbb{N}^*$, $-\frac{1}{n} + \frac{1}{(n+1)^2} + \frac{1}{n+1} \le 0$.

2. Use previous question to show that $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k^2} \le 2 - \frac{1}{n}$.

Solution. • Using a direct proof: given $n \ge 1$, $-\frac{1}{n} + \frac{1}{(n+1)^2} + \frac{1}{n+1} = -\frac{(n+1)^2}{n(n+1)^2} + \frac{n}{n(n+1)^2} + \frac{n(n+1)}{n(n+1)^2} = -\frac{1}{n(n+1)^2} \le 0$ since $n(n+1)^2 > 0$.

• Let's prove by induction $\forall n \in \mathbb{N}^* P(n)$ is true, where $P(n) := \sum_{k=1}^n \frac{1}{k^2} \le 2 - \frac{1}{n}$. For n = 1: $\sum_{k=1}^1 \frac{1}{k^2} = 1 \le 2 - 1$. Then P(1) is true. Given $n \ge 1$, assume P(n) is true. Let us show that P(n+1) is true. $\sum_{k=1}^{n+1} \frac{1}{k^2} = \sum_{k=1}^n \frac{1}{k^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}$ (using P(n)). Using question 1 we have $-\frac{1}{n} + \frac{1}{(n+1)^2} \le -\frac{1}{n+1}$, therefore $\sum_{k=1}^{n+1} \frac{1}{k^2} \le 2 - \frac{1}{n+1}$, which concludes the proof.

Exercise 6. The goal is to find all functions $f : \mathbb{R} \to \mathbb{R}$ so that:

$$\forall (x,y) \in \mathbb{R}^2, |f(x) + f(y)| = |x+y|. \tag{E}$$

- 1. (a) We define $f_1 : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \end{cases}$. Show that f_1 satisfies (E). (b) We define $f_2 : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -x \end{cases}$. Show that f_2 satisfies (E).
- 2. Let be $f : \mathbb{R} \to \mathbb{R}$.
 - (a) Show that if $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$, then $\forall x \in \mathbb{R}, |f(x)| = |x|$.

- (b) Write the negation of $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)].$
- (c) Show that if $(\forall x \in \mathbb{R}, |f(x)| = |x|)$, then $[\forall x \in \mathbb{R}, (f(x) = x \text{ or } f(x) = -x)]$ (read carefully).
- 3. Let be $f : \mathbb{R} \to \mathbb{R}$ a function satisfying (E).
 - (a) Show that f(0) = 0.
 - (b) Show that $\forall x \in \mathbb{R}, |f(x)| = |x|$.
 - (c) Show by contradiction that we have $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$

4. What is the set of functions satisfying (E) then ?

Solution. • $\forall x, y, |x+y| = |x+y|$ so f_1 satisfies (E).

- $\forall x, y, |-x + -y| = |x + y|$ so f_2 satisfies (E).
- If $\forall x \in \mathbb{R}$, f(x) = x then |f(x)| = x, or if $\forall x \in \mathbb{R}$, f(x) = -x then |f(x)| = |-x| = |x|. So if $\forall x \in \mathbb{R}$, f(x) = x or $\forall x \in \mathbb{R}$, f(x) = -x then |f(x)| = |x|.
- $\exists x \in \mathbb{R}, f(x) \neq x \text{ and } \exists x' \in \mathbb{R}, f(x') \neq -x'.$
- Assume $\forall x \in \mathbb{R}, |f(x)| = |x|$. Then

$$|f(x)| = \begin{cases} x & \text{if } x \ge 0, \\ x & \text{if } -x < 0 \end{cases} \iff \begin{cases} f(x) = x & \text{if } x \ge 0, f(x) \ge 0, \\ f(x) = -x & \text{if } x \ge 0, f(x) < 0, \\ f(x) = -x & \text{if } x < 0, f(x) \ge 0, \\ f(x) = x & \text{if } x < 0, f(x) < 0 \end{cases}$$

then $\forall x \in \mathbb{R}$, f(x) takes only values x or -x, therefore $\forall x \in \mathbb{R}$, (f(x) = x or f(x) = -x).

- Using (E) for x = 0 = y, $|f(0) + f(0)| = 0 \Longrightarrow f(0) = 0$.
- Using (E) for x = y, $|f(x) + f(x)| = |x + x| \iff |f(x)| = |x|$.
- Assume $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$ is false. Using 2)b) $\exists x_0 \in \mathbb{R}, f(x_0) \neq x_0$ and $\exists x_1 \in \mathbb{R}, f(x_1) \neq -x_1$. Since |f(x)| = |x| by 3)b), from question 2)c) we deduce that $\forall x \in \mathbb{R}, (f(x) = x \text{ or } f(x) = -x)$. Then $f(x_0) = -x_0$ and $f(x_1) = x_1$ and

$$\begin{split} |f(x_0) + f(x_1)| &= |x_0 + x_1| \iff |-x_0 + x_1| = |x_0 + x_1| \\ \implies \begin{cases} -x_0 + x_1 = x_0 + x_1 & \text{if } -x_0 + x_1 \ge 0, x_0 + x_1 \ge 0, \\ -x_0 + x_1 = -x_0 - x_1 & \text{if } -x_0 + x_1 \ge 0, x_0 + x_1 < 0, \\ x_0 - x_1 = x_0 + x_1 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 \ge 0, \\ x_0 - x_1 = -x_0 - x_1 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0 \end{cases} \\ \implies \begin{cases} x_0 = 0 & \text{if } -x_0 + x_1 \ge 0, x_0 + x_1 \ge 0, \\ x_1 = 0 & \text{if } -x_0 + x_1 \ge 0, x_0 + x_1 < 0, \\ x_1 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 \ge 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0, \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_1 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_0 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_0 < 0 \\ x_0 = 0 & \text{if } -x_0 + x_0 < 0 \\ x_0 = 0 & \text{if } -x_0 & \text{if }$$

however $f(0) = \pm 0$ which contradicts the definition of x_0, x_1 . Therefore $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$ is true.

• Using 3)c) we conclude that f satisfying $(E) \Longrightarrow \forall x \in \mathbb{R}, f(x) = |x| \Longrightarrow f = f_1$ or $f = f_2$. The $S = \{f_1, f_2\}$.

Properties of functions (6 points)

Exercise 7. Let *E* be a non-empty set, and we denote two functions $f : E \to E$, $g : E \to E$. We define $h : E \to E$ so that: $\forall x \in E$, h(x) = g(f(x) + x).

- 1. (a) Using quantifiers, write the proposition "h is injective", and "h is surjective".
 - (b) If $Id_E + f$ is injective and if g is injective, can we conclude that h is injective ? Justify your answer (we expect a clear reasoning).
- 2. (a) Let P, Q, R be three statements. Give the contrapositive of $: (P \lor Q) \Longrightarrow R$.
 - (b) Consider the proposition

 $(P_0) \equiv [\operatorname{Id}_E + f \text{ is surjective or if } g \text{ is surjective}] \Longrightarrow h \text{ is surjective}$

Is (P_0) true ? Justify your answer (we expect a clear reasoning).

- Solution. $\forall x, x' \in E, h(x) = h(x') \Longrightarrow x = x'$. In other words $\forall x, x' \in E, g(x + f(x)) = g(x' + f(x')) \Longrightarrow x = x'$
 - $\forall y \in E, \exists x \in E, h(x) = y$. In other words $\forall y \in E, \exists x \in E, g(x + f(x)) = y$
 - Let $x, x' \in E$ such that g(x + f(x)) = g(x' + f(x')). Since g is injective, then $x + f(x) = x' + f(x') \iff (\mathrm{Id}_E + f)(x) = (\mathrm{Id}_E + f)(x')$. Since $\mathrm{Id}_E + f$ is injective, we conclude that x = x' therefore h is injective.
 - $\neg R \Longrightarrow (\neg P \land \neg Q)$
 - By case disjunction.

If $\mathrm{Id}_E + f$ surjective but g is not surjective: $\forall z \in E, \exists x \in E, x + f(x) = z$ then g(x + f(x)) = g(z). However $\exists y \in E, \forall z \in E, g(z) \neq y$, other words $g(x + f(x)) \neq y$. Then h is not surjective.

If $\operatorname{Id}_E + f$ is not surjective but g is surjective: $\exists z' \in E, \forall x \in E, x + f(x) \neq z'$. Since $\forall x \in E, x + f(x) \in E$, by surjectivity of $g, \exists z \in E, g(z) = x + f(x)$ so $g(z) \neq z'$ which contradicts with g being surjective. So the statement $[\operatorname{Id}_E + f$ is not surjective but g is surjective] is false: either it's the case above, or both are not surjective. In all cases we conclude that h is not surjective. So (P_0) is not true.