Exam n ${ }^{\circ}$ 1-1 hour 30 minutes

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok!) and read entirely the exam before starting. ${ }^{1}$
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (copies doubles) if multiple : for example $1 / 3$, $2 / 3,3 / 3$
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your ' x ' and ' n ' can be distinguished.

Warm-up exercises (3 points)

Exercise 1. Let $n \in \mathbb{N}$. Compute the following sum (justify the result) : $\sum_{j=0}^{n} 2^{j}\binom{n}{j}$.
Exercise 2. Sketch the graph of the function $f: x \mapsto-|x+3|$.

Solving equations (3 points)

Exercise 3. Solve in \mathbb{R} the following inequality : $\sqrt{x} \leq 2-x$.
Exercise 4. Solve in \mathbb{R} the following equation : $\cos \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}$.

Strategies of proof (8 points)

Exercise 5.

1. Show that $\forall n \in \mathbb{N}^{*},-\frac{1}{n}+\frac{1}{(n+1)^{2}}+\frac{1}{n+1} \leq 0$.
2. Show by induction that $\forall n \in \mathbb{N}^{*}, \sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}$.

Exercise 6. The goal is to find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ so that:

$$
\begin{equation*}
\forall(x, y) \in \mathbb{R}^{2},|f(x)+f(y)|=|x+y| \tag{E}
\end{equation*}
$$

1. (a) We define $f_{1}:\left\{\begin{array}{rll}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \mapsto & x\end{array}\right.$. Show that f_{1} satisfies (E).
2. Draw a star next to your name on the first page once this is done.
(b) We define $f_{2}:\left\{\begin{array}{rll}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto & -x\end{array}\right.$. Show that f_{2} satisfies (E).
3. Let be $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Show that if $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$, then $\forall x \in \mathbb{R},|f(x)|=|x|$.
(b) Write the negation of $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$.
(c) Show that if $(\forall x \in \mathbb{R},|f(x)|=|x|)$, then $[\forall x \in \mathbb{R},(f(x)=x$ or $f(x)=-x)]$ (read carefully).
4. Let be $f: \mathbb{R} \rightarrow \mathbb{R}$ a function satisfying (E).
(a) Show that $f(0)=0$.
(b) Show that $\forall x \in \mathbb{R},|f(x)|=|x|$.
(c) Show by contradiction that we have $[(\forall x \in \mathbb{R}, f(x)=x)$ or $(\forall x \in \mathbb{R}, f(x)=-x)]$
5. What is the set of functions satisfying (E) then?

Properties of functions (6 points)

Exercise 7.

Let E a non-empty set, and we denote two functions $f: E \rightarrow E, g: E \rightarrow E$. We define $h: E \rightarrow E$ so that : $\forall x \in E, h(x)=g(f(x)+x)$.

1. (a) Using quantifiers, write the proposition " h is injective", and " h is surjective".
(b) If $\operatorname{Id}_{E}+f$ is injective and if g is injective, can we conclude that h is injective? Justify your answer (we expect a clear reasoning).
2. (a) Let P, Q, R be three statements. Give the contrapositive of : $(P \vee Q) \Longrightarrow R$.
(b) Consider the proposition

$$
\left(P_{0}\right) \equiv\left[\operatorname{Id}_{E}+f \text { is surjective or if } g \text { is surjective }\right] \Longrightarrow h \text { is surjective }
$$

Is $\left(P_{0}\right)$ true? Justify your answer (we expect a clear reasoning).

