Exam $n^{o} 1 - 1$ hour 30 minutes

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok !) and read entirely the exam before starting.¹
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (*copies doubles*) if multiple : for example 1/3, 2/3, 3/3
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your 'x' and 'n' can be distinguished.

Warm-up exercises (3 points)

Exercise 1. Let $n \in \mathbb{N}$. Compute the following sum (justify the result) : $\sum_{i=0}^{n} 2^{j} \binom{n}{j}$.

Exercise 2. Sketch the graph of the function $f: x \mapsto -|x+3|$.

Solving equations (3 points)

Exercise 3. Solve in \mathbb{R} the following inequality : $\sqrt{x} \leq 2 - x$.

Exercise 4. Solve in \mathbb{R} the following equation : $\cos\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}$.

Strategies of proof (8 points)

Exercise 5.

- 1. Show that $\forall n \in \mathbb{N}^*$, $-\frac{1}{n} + \frac{1}{(n+1)^2} + \frac{1}{n+1} \le 0$.
- 2. Show by induction that $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k^2} \le 2 \frac{1}{n}$.

Exercise 6. The goal is to find all functions $f : \mathbb{R} \to \mathbb{R}$ so that :

$$\forall (x,y) \in \mathbb{R}^2, |f(x) + f(y)| = |x+y|. \tag{E}$$

1. (a) We define $f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \end{cases}$. Show that f_1 satisfies (E).

^{1.} Draw a star next to your name on the first page once this is done.

(b) We define $f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -x \end{cases}$. Show that f_2 satisfies (E).

- 2. Let be $f : \mathbb{R} \to \mathbb{R}$.
 - (a) Show that if $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$, then $\forall x \in \mathbb{R}, |f(x)| = |x|$.
 - (b) Write the negation of $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)].$
 - (c) Show that if $(\forall x \in \mathbb{R}, |f(x)| = |x|)$, then $[\forall x \in \mathbb{R}, (f(x) = x \text{ or } f(x) = -x)]$ (read carefully).
- 3. Let be $f : \mathbb{R} \to \mathbb{R}$ a function satisfying (E).
 - (a) Show that f(0) = 0.
 - (b) Show that $\forall x \in \mathbb{R}, |f(x)| = |x|$.
 - (c) Show by contradiction that we have $[(\forall x \in \mathbb{R}, f(x) = x) \text{ or } (\forall x \in \mathbb{R}, f(x) = -x)]$
- 4. What is the set of functions satisfying (E) then?

Properties of functions (6 points)

Exercise 7.

Let E a non-empty set, and we denote two functions $f: E \to E, g: E \to E$. We define $h: E \to E$ so that : $\forall x \in E, h(x) = g(f(x) + x)$.

- 1. (a) Using quantifiers, write the proposition "h is injective", and "h is surjective".
 - (b) If $Id_E + f$ is injective and if g is injective, can we conclude that h is injective? Justify your answer (we expect a clear reasoning).
- 2. (a) Let P, Q, R be three statements. Give the contrapositive of $: (P \lor Q) \Longrightarrow R$.
 - (b) Consider the proposition

 $(P_0) \equiv [\operatorname{Id}_E + f \text{ is surjective or if } g \text{ is surjective}] \Longrightarrow h \text{ is surjective}$

Is (P_0) true? Justify your answer (we expect a clear reasoning).