Exam n ${ }^{0}$ 2023-2024-2 hours

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok!) and read entirely the exam before starting. ${ }^{0}$.
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (copies doubles) if multiple : for example $1 / 3$, $2 / 3,3 / 3$
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your ' x ' and ' n ' can be distinguished.
- Respecting all of the above is part of the exam grade.

Warm-up exercises (8 points)

You are expected to provide some steps for those exercises. Little partial credit will be given for just writing the answer.

Exercise 1. Consider the polynomial $P(X)=X^{4}+2 X^{3}-2 X-1$. Factorize P in \mathbb{R} and in \mathbb{C}.

Solution. - We remark that 1 is root of $P: P(1)=1+2-2-1=0$.

- We perform the euclidean division of P by $(X-1)$:

$$
\begin{array}{c|l}
X^{4}+2 X^{3}-2 X-1 & X-1 \\
\cline { 2 - 2 }-\left(X^{4}-X^{3}\right) \\
\hline 3 X^{3}-2 X-1 & X^{3}+3 X^{2}+3 X+1=(X+1)^{3} \\
\frac{-\left(3 X^{3}-3 X^{2}\right)}{3 X^{2}-2 X-1} & \\
\frac{-\left(3 X^{2}-3 X\right)}{X-1} \\
\frac{-(X-1)}{0} &
\end{array}
$$

— We find that $P(X)=(X-1)(X+3)^{2}$ (using the binomial theorem) both in \mathbb{R} and \mathbb{C}.

Exercise 2. Provide the Taylor series expansion of order 2 for $f(x)=\cos (x)+\ln (1-4 x)$ at $x=0$.

Solution. - The TSE of order 2 of $x \mapsto \cos (x)$ at $x=0$ is $\cos (x) \underset{x \rightarrow 0}{=} 1-\frac{x^{2}}{2}+h_{2}(x) x^{2}$, with $\lim _{x t o 0} h_{2}(x)=0$.

- The TSE of order 2 of $x \mapsto \ln (1+x)$ at $x=0$ is $\ln (1+x) \underset{x \rightarrow 0}{=} x-\frac{x^{2}}{2}+g_{2}(x) x^{2}$, with $\lim _{x \rightarrow 0} g_{2}(x)=0$.
- By composition TSE of order 2 of $x \mapsto \ln (1-4 x)$ at $x=0$ is $\ln (1-4 x) \underset{x \rightarrow 0}{=}-4 x-8 x^{2}+g_{2}(x) x^{2}$, with $\lim _{x \rightarrow 0} g_{2}(x)=0$ (abuse of notation here, we keep g_{2}).
- Therefore $f(x) \underset{x \rightarrow 0}{=} 1-4 x-\frac{17 x^{2}}{2}+f_{2}(x) x^{2}$, with $\lim _{x \rightarrow 0} f_{2}(x)=0$.

Exercise 3. Consider $f: A \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{x^{2}+4 x+4}$. Provide the domain of definition A. Sketch the graph of f (justify limit behaviors). Is f surjective? Is f injective? Be as precise as possible in your answers.

Solution. - We remark that $f(x)=\frac{x}{(x+2)^{2}}$ so its domain of definition is $A=\mathbb{R} \backslash\{-2\}$.

- f is a rational fraction therefore $f(x) \sim_{ \pm \infty} \frac{1}{x}$. Other other words $\lim _{x \rightarrow \pm \infty} f(x)=0^{ \pm}$.
- Additionally, $f(0)=0$, for all $x \in \mathbb{R}_{*}^{+}, f(x)>0$ and for all $x \in \mathbb{R}_{*}^{-} \backslash\{-2\}, f(x)<0$. Finally

$$
\lim _{x \rightarrow-2^{ \pm}} f(x)=-\infty .
$$

- f is not surjective : for example $f(x)=1$ has no solution. Indeed : $f(x)=1 \Longleftrightarrow x^{2}+3 x+4=0$, $\Delta=9-16<0$.
- f is not injective either : for example $f(x)=-1 \Longleftrightarrow x^{2}+5 x+4=0, \Delta=25-16=9$, $x=-\frac{5}{2} \pm \frac{3}{2}$, namely $x=-4$ or $x=-1$. We found $x \neq x^{\prime}$ such that $f(x)=f\left(x^{\prime}\right)$.

Exercise 4. Consider $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that

$$
f(x, y, z, t)=(x+y+2 z+t, x+2 y+z-3 t, 3 x+y-z, x+12 z+16 t), \quad \forall(x, y, z, t) \in \mathbb{R}^{4}
$$

Find the preimage(s) by f of $(1,0,2,5)$, and give $\operatorname{ker}(f)$. We expect detailed steps and a proper solution written in the end.

Solution.

$$
f\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
2 \\
5
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
x+y+2 z+t=1 \\
x+2 y+z-3 t=0 \\
3 x+y-z=2 \\
x+12 z+16 t=5
\end{array} \quad \Leftrightarrow\left(\begin{array}{cccc|c}
x & y & z & t & b \\
1 & 1 & 2 & 1 & 1 \\
1 & 2 & 1 & -3 & 0 \\
3 & 1 & -1 & 0 & 2 \\
1 & 0 & 12 & 16 & 5
\end{array}\right)\right.
$$

L_{4} is the the opposite of L_{3} we end up with a system of 3 equations for 4 unknowns. There is one free parameter.

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
x & y & z & t & b \\
1 & 1 & 2 & 1 & 1 \\
0 & 1 & -1 & -4 & -1 \\
0 & 0 & -9 & -11 & -3
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
x=1-\frac{4}{3} \lambda \\
y=-\frac{2}{3}+\frac{25}{9} \lambda \\
z=\frac{1}{3}-\frac{11}{9} \lambda \\
t=\lambda
\end{array}, \lambda \in \mathbb{R}\right. \\
& S=\left\{\left(\begin{array}{c}
1 \\
-\frac{2}{3} \\
\frac{1}{3} \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
-\frac{4}{3} \\
\frac{25}{9} \\
-\frac{11}{9} \\
1
\end{array}\right): \lambda \in \mathbb{R}\right\}=\left(\begin{array}{c}
1 \\
-\frac{2}{3} \\
\frac{1}{3} \\
0
\end{array}\right)+\operatorname{Span}\left(\left(\begin{array}{c}
-\frac{4}{9} \\
\frac{25}{9} \\
-\frac{11}{9} \\
1
\end{array}\right)\right)=\left(\begin{array}{c}
1 \\
-\frac{2}{3} \\
\frac{1}{3} \\
0
\end{array}\right)+\operatorname{ker}(f)
\end{aligned}
$$

Exercise 5. Consider $A=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y \geq 0, x+2 y+3 z=0, x+y \leq 0\right\}$. Is A a vector subspace of \mathbb{R}^{3} ? Justify your answer.

Solution. - First we remark that $\left\{\begin{array}{l}x+y \geq 0 \\ x+2 y+3 z=0 \\ x+y \leq 0\end{array} \Longleftrightarrow\left\{\begin{array}{l}x+y=0 \\ x+2 y+3 z=0\end{array}\right.\right.$
$-(0,0,0) \in A$

- Let $u=\left(u_{1}, u_{2}, u_{3}\right), v=\left(v_{1}, v_{2}, v_{3}\right), \in A, \alpha, \beta \in \mathbb{R}$. Then $w:=\alpha u+\beta v=\left(\alpha u_{1}+\beta v_{1}, \alpha u_{2}+\right.$ $\left.\beta v_{2}, \alpha u_{3}+\beta v_{3}\right)=\left(w_{1}, w_{2}, w_{3}\right)$. Let us prove that $w \in A$.
$-w_{1}+w_{2}=\alpha u_{1}+\beta v_{1}+\alpha u_{2}+\beta v_{2}=\alpha\left(u_{1}+u_{2}\right)+\beta\left(v_{1}+v_{2}\right)=0+0$
$-w_{1}+2 w_{2}+w_{3}=\alpha u_{1}+\beta v_{1}+2 \alpha u_{2}+2 \beta v_{2}+\alpha u_{3}+\beta v_{3}=\alpha\left(u_{1}+2 u_{2}+u_{3}\right)+\beta\left(v_{1}+2 v_{2}+v_{3}\right)=0+0$
- Therefore A is a vector subspace
- Other option : $A=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y=0, x+2 y+3 z=0\right\}=\operatorname{Span}\left(\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)\right)$ so A is a vector subspace.

Functions (4 points)

Exercise 6.

For all $x \in \mathbb{R}$, define $f(x)=\operatorname{sh}(\sin (2 x))$.

1. Provide a co-domain so that f is surjective.
2. Study the parity of f.
3. Is f injective? Justify.
4. Without computing the derivative, show that f is monotonic on $[0, a]$, where $a>0$ is to be determined.
5. Show that $\forall x \in[0,1], \operatorname{sh}(x) \geq x$.
6. Provide a restriction of f (denoted \tilde{f}) that is bijective.
7. Sketch the graph of \tilde{f}, as well as its reciprocal function.
8. (*For the challenge*) Find an expression of \tilde{f}^{-1}.

Solution. - $f: \mathbb{R} \rightarrow[\operatorname{sh}(-1), \operatorname{sh}(1)]$ is surjective $(x \mapsto \operatorname{sh}(x)$ is continuous and increasing, $x \mapsto \sin (2 x)$ is continuous and takes values in $[-1,1])$.

- f is π-periodic : $\forall x \in \mathbb{R}, f(x+\pi)=\operatorname{sh}(\sin (2 x+2 \pi))=\operatorname{sh}(\sin (2 x))=f(x)$.
- f is not injective since it is periodic (we have found $x \neq x^{\prime}$ such that $f(x)=f\left(x^{\prime}\right)$)
- By composition, $x \mapsto \sin (2 x)$ is strictly increasing over $\left[0, \frac{\pi}{4}\right]$, and $x \mapsto \operatorname{sh}(x)$ is strictly increasing over $\left[0, \frac{\pi}{4}\right]$. So by composition f is strictly increasing (therefore monotonic) over $[0, a]$ with $a=\frac{\pi}{4}$.
- Define the function $g(x)=\operatorname{sh}(x)-x . g$ is continuous and differentiable over $[0,1]$ and $g^{\prime}(x)=$ $\operatorname{ch}(x)-1 \geq 0, \forall x$ in $[0,1]$. Then we conclude that g is increasing and $\forall x \in[0,1], g(x) \geq$ $g(0)=0$. So $\operatorname{sh}(x) \geq x$.
- Since f is strictly monotonic over $\left[0, \frac{\pi}{4}\right]$, it is injective. Therefore $\tilde{f}:\left[0, \frac{\pi}{4}\right] \rightarrow[0, \operatorname{sh}(1)]$ is surjective and injective, it is a bijection.
- We know that \tilde{f} is strictly increasing over $\left[0, \frac{\pi}{4}\right]$, and $\forall x \in\left[0, \frac{\pi}{4}\right], X:=\sin (2 x) \in[0,1]$ and $\tilde{f}(X) \geq X$.

Figure 1 - Blue \tilde{f}, Orange $y=x$, Green \tilde{f}^{-1}.

- $\tilde{f}^{-1}(x)=\frac{1}{2} \arcsin (\operatorname{argsh}(x))$.

Polynomials (4 points)

Exercise 7.

Let $A=\left\{P \in \mathbb{R}_{3}[X] \mid \forall X, P(X+1)-P(X)=X^{2}-1\right\}$.

1. Find all $P \in A$.
2. Without computing derivatives, provide $P^{(k)}(0), k=0, \ldots, 3$.
3. Deduce $\sum_{k=0}^{n}(k-1)(k+1)$.
4. Given $P \in A$, show that there exists $a \in \mathbb{N}$ such that $P(a)=P(1+a)$ and $P(-a)=P(1-a)$.
5. Is the function $x \mapsto P(x)$ injective? Justify your answer.

Solution. $\quad-P \in \mathbb{R}_{3}[X]$ so we write $P(X)=a X^{3}+b X^{2}+c X+d, a, b, c, d \in \mathbb{R}$.

- Using the binomial theorem we find

$$
\begin{aligned}
P(X+1)-P(X)= & a\left(X^{3}+3 X^{2}+3 X+1\right)+b\left(X^{2}+2 X+1\right)+c(X+1)+d \\
& -\left(a X^{3}+b X^{2}+c X+d\right) \\
= & 3 a X^{2}+(3 a+2 b) X+(a+b+c) \\
= & X^{2}-1
\end{aligned}
$$

by identification we find

$$
\left\{\begin{array}{l}
a=\frac{1}{3} \\
b=-\frac{3}{2} a=-\frac{1}{2} \\
c=-1-a-b=-\frac{5}{6}
\end{array}\right.
$$

Therefore $A=\left\{P \in \mathbb{R}_{3}[X] \left\lvert\, P(X)=\frac{1}{3} X^{3}-\frac{1}{2} X^{2}-\frac{5}{6} X+d\right., d \in \mathbb{R}\right\}$

- By Taylor we have $P(X)=P(0)+P^{\prime}(0) X+\frac{P^{\prime \prime}(0)}{2} X^{2}+\frac{P^{\prime \prime \prime}(0)}{6} X^{3}$, by identification we find

$$
\left\{\begin{array}{l}
P(0)=d \\
P^{\prime}(0)=-\frac{5}{6} \\
P^{\prime \prime}(0)=-1 \\
P^{\prime \prime \prime}(0)=2
\end{array}\right.
$$

$-\forall X \in \mathbb{R}, P(X+1)-P(X)=X^{2}-1=(X+1)(X-1)$. Therefore replace X by k and summing over $\llbracket 0, n \rrbracket$ we get a telescopic sum :

$$
\sum_{k=0}^{n}(k-1)(k+1)=\sum_{k=0}^{n} P(k+1)-\sum_{k=0}^{n} P(k)=P(n+1)-P(0)=\frac{1}{3}(n+1)^{3}-\frac{1}{2}(n+1)^{2}-\frac{5}{6}(n+1)
$$

- We remark that $X^{2}-1$ has two roots : ± 1. Then $P(1+1)-P(1)=0$ and $P(-1+1)-P(-1)=0$, in other words $P(1)=P(1+1)$, and $P(-1)=P(-1+1)$ so $a=1$.
- Using previous question $P(0)=P(1)$ so $x \mapsto P(x)$ is not injective (unless we restrict the domain).

Vector Subspace (4 points)

Exercise 8.

Consider the two subsets $F, G \subset \mathbb{R}^{4}$ given by :

$$
F=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x+y+z=0, x+y+t=0\right\}, \quad G=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x=0, y=0\right\} .
$$

0 . Draw a cat next to your name on the first page once this is done.

1. Show that F, G are vector subspaces of \mathbb{R}^{4} and determine a basis B_{F} of F, and a basis B_{G} of G.
2. Show that the family of vectors from B_{F} and B_{G} is a basis of \mathbb{R}^{4}. We will called this basis B^{\prime}.
3. Given $u \in \mathbb{R}^{4}$ such that $[u]_{B}=(a, b, c, d)$ where B is the canonical basis. Give $[u]_{B^{\prime}}$.

Solution. $\quad-F=\operatorname{Span}\left(\left(\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1 \\ -1\end{array}\right)\right)$ and $G=\operatorname{Span}\left(\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right)$ so F, G are vector subspaces of \mathbb{R}^{4}.
$-\left(\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right)$ is linearly independant (and generating F) so it is a basis of F. Same for
$\left(\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right)$ so we conclude it is a basis of G.
$-B^{\prime}=\left(B_{F}, B_{G}\right)=\left(\left(\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right)=\left(u_{1}, u_{2}, e_{3}, e_{4}\right)$ where e_{3}, e_{4} are canonical vectors.

$$
\begin{aligned}
\operatorname{rk}\left(B^{\prime}\right) & =\mathrm{rk}\left(\left(\begin{array}{c}
1 \\
0 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right) \\
& =\mathrm{rk}\left(\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1 \\
-1
\end{array}\right)\right) \\
& =\mathrm{rk}\left(\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\right)=\operatorname{rk}(C)=4
\end{aligned}
$$

as we obtained a row echelon form $\left(B^{\prime} \leadsto C\right)$. Then B^{\prime} is linearly independent and $\operatorname{rk}\left(B^{\prime}\right)=$ $4=\operatorname{dim}\left(\mathbb{R}^{4}\right)$ so it is a basis of \mathbb{R}^{4}.
$-[u]_{B}=a e_{1}+b e_{2}+c e_{3}+d e_{4}$. We have

$$
\left\{\begin{array} { l }
{ u _ { 1 } = e _ { 1 } - e _ { 3 } - e _ { 4 } } \\
{ u _ { 2 } = e _ { 2 } - e _ { 3 } - e _ { 4 } } \\
{ u _ { 3 } = e _ { 3 } } \\
{ u _ { 4 } = e _ { 4 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
e_{1}=-u_{1}+u_{3}+u_{4} \\
e_{2}=-u_{2}+u_{3}+u_{4} \\
e_{3}=u_{3} \\
e_{4}=u_{4}
\end{array}\right.\right.
$$

therefore $[u]_{B^{\prime}}=-a u_{1}-b u_{2}+(a+b+c) u_{3}+(a+b+d) u_{4}=\left(\begin{array}{c}-a \\ -b \\ a+b+c \\ a+b+d\end{array}\right)$

