Exam nº 2023-2024 – 2 hours

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok !) and read entirely the exam before starting.⁰.
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (*copies doubles*) if multiple : for example 1/3, 2/3, 3/3
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your 'x' and 'n' can be distinguished.
- Respecting all of the above is part of the exam grade.

Warm-up exercises (8 points)

You are expected to provide some steps for those exercises. Little partial credit will be given for just

writing the answer.

Exercise 1. Consider the polynomial $P(X) = X^4 + 2X^3 - 2X - 1$. Factorize P in \mathbb{R} and in \mathbb{C} .

Solution. — We remark that 1 is root of P: P(1) = 1 + 2 - 2 - 1 = 0. — We perform the euclidean division of P by (X - 1):

$$\begin{array}{c|cccc} X^4 + 2X^3 - 2X - 1 & & X - 1 \\ \hline -(X^4 - X^3) & & X^3 - 2X - 1 \\ \hline & -(3X^3 - 3X^2) & & \\ \hline & & -(3X^3 - 3X^2) & & \\ \hline & & & 3X^2 - 2X - 1 \\ & & -(3X^2 - 3X) & & \\ \hline & & & & -(X - 1) \\ \hline & & & & 0 \end{array}$$

— We find that $P(X) = (X - 1)(X + 3)^2$ (using the binomial theorem) both in \mathbb{R} and \mathbb{C} .

Exercise 2. Provide the Taylor series expansion of order 2 for $f(x) = \cos(x) + \ln(1 - 4x)$ at x = 0.

Solution. — The TSE of order 2 of $x \mapsto \cos(x)$ at x = 0 is $\cos(x) \stackrel{=}{=} 1 - \frac{x^2}{2} + h_2(x)x^2$, with $\lim_{x \to 0} h_2(x) = 0.$

- The TSE of order 2 of $x \mapsto \ln(1+x)$ at x = 0 is $\ln(1+x) = x - \frac{x^2}{2} + g_2(x)x^2$, with $\lim_{x \to 0} g_2(x) = 0.$

- By composition TSE of order 2 of $x \mapsto \ln(1-4x)$ at x = 0 is $\ln(1-4x) \underset{x\to 0}{=} -4x - 8x^2 + g_2(x)x^2$, with $\lim_{x\to 0} g_2(x) = 0$ (abuse of notation here, we keep g_2).

- Therefore
$$f(x) = 1 - 4x - \frac{17x^2}{2} + f_2(x)x^2$$
, with $\lim_{x \to 0} f_2(x) = 0$.

Exercise 3. Consider $f: A \to \mathbb{R}$ such that $f(x) = \frac{x}{x^2 + 4x + 4}$. Provide the domain of definition A. Sketch the graph of f (justify limit behaviors). Is f surjective? Is f injective? Be as precise as possible in your answers.

— We remark that $f(x) = \frac{x}{(x+2)^2}$ so its domain of definition is $A = \mathbb{R} \setminus \{-2\}$. Solution.

- $\begin{array}{l} f \text{ is a rational fraction therefore } f(x) \sim_{\pm\infty} \frac{1}{x}. \text{ Other other words } \lim_{x \to \pm\infty} f(x) = 0^{\pm}. \\ \text{ Additionally, } f(0) = 0, \text{ for all } x \in \mathbb{R}^+_*, \ f(x) > 0 \text{ and for all } x \in \mathbb{R}^-_* \setminus \{-2\}, \ f(x) < 0. \text{ Finally} \end{array}$

 $\lim_{x \to -2^{\pm}} f(x) = -\infty.$

- f is not surjective : for example f(x) = 1 has no solution. Indeed : $f(x) = 1 \iff x^2 + 3x + 4 = 0$, $\Delta = 9 - 16 < 0.$
- f is not injective either : for example $f(x) = -1 \iff x^2 + 5x + 4 = 0$, $\Delta = 25 16 = 9$, $x = -\frac{5}{2} \pm \frac{3}{2}$, namely x = -4 or x = -1. We found $x \neq x'$ such that f(x) = f(x').

Exercise 4. Consider $f : \mathbb{R}^4 \to \mathbb{R}^4$ such that

$$f(x, y, z, t) = (x + y + 2z + t, x + 2y + z - 3t, 3x + y - z, x + 12z + 16t), \quad \forall (x, y, z, t) \in \mathbb{R}^4.$$

Find the preimage(s) by f of (1, 0, 2, 5), and give ker(f). We expect detailed steps and a proper solution written in the end.

Solution.

$$f\begin{pmatrix}x\\y\\z\\t\end{pmatrix} = \begin{pmatrix}1\\0\\2\\5\end{pmatrix} \Leftrightarrow \begin{cases}x+y+2z+t=1\\x+2y+z-3t=0\\3x+y-z=2\\x+12z+16t=5\end{cases} \Leftrightarrow \begin{cases}x+y-z & t & b\\1 & 1 & 2 & 1 & | & 1\\1 & 2 & 1 & -3 & | & 0\\3 & 1 & -1 & 0 & | & 2\\1 & 0 & 12 & 16 & | & 5\end{cases}$$

, 1

 L_4 is the the opposite of L_3 we end up with a system of 3 equations for 4 unknowns. There is one free parameter.

Exercise 5. Consider $A = \{(x, y, z) \in \mathbb{R}^3 | x + y \ge 0, x + 2y + 3z = 0, x + y \le 0\}$. Is A a vector subspace of \mathbb{R}^3 ? Justify your answer.

Solution. — First we remark that
$$\begin{cases} x+y \ge 0\\ x+2y+3z=0 \iff \\ x+y \le 0 \end{cases} \begin{pmatrix} x+y=0\\ x+2y+3z=0 \end{cases}$$

- $-(0,0,0) \in A$
- Let $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$, $\in A$, $\alpha, \beta \in \mathbb{R}$. Then $w := \alpha u + \beta v = (\alpha u_1 + \beta v_1, \alpha u_2 + \beta v_2, \alpha u_3 + \beta v_3) = (w_1, w_2, w_3)$. Let us prove that $w \in A$.
- $w_1 + w_2 = \alpha u_1 + \beta v_1 + \alpha u_2 + \beta v_2 = \alpha (u_1 + u_2) + \beta (v_1 + v_2) = 0 + 0$
- $w_1 + 2w_2 + w_3 = \alpha u_1 + \beta v_1 + 2\alpha u_2 + 2\beta v_2 + \alpha u_3 + \beta v_3 = \alpha (u_1 + 2u_2 + u_3) + \beta (v_1 + 2v_2 + v_3) = 0 + 0$
- Therefore A is a vector subspace

- Other option :
$$A = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0, x + 2y + 3z = 0\} = \text{Span}\left(\begin{pmatrix} 3\\ -3\\ 1 \end{pmatrix}\right)$$
 so A is a vector subspace.

Functions (4 points)

Exercise 6.

For all $x \in \mathbb{R}$, define $f(x) = \operatorname{sh}(\sin(2x))$.

- 1. Provide a co-domain so that f is surjective.
 - 2. Study the parity of f.
 - 3. Is f injective? Justify.
 - 4. Without computing the derivative, show that f is monotonic on [0, a], where a > 0 is to be determined.
 - 5. Show that $\forall x \in [0, 1]$, sh $(x) \ge x$.

- 6. Provide a restriction of f (denoted \tilde{f}) that is bijective.
- 7. Sketch the graph of \tilde{f} , as well as its reciprocal function.
- 8. (*For the challenge*) Find an expression of \tilde{f}^{-1} .
- Solution. $-f : \mathbb{R} \to [\operatorname{sh}(-1), \operatorname{sh}(1)]$ is surjective $(x \mapsto \operatorname{sh}(x)$ is continuous and increasing, $x \mapsto \sin(2x)$ is continuous and takes values in [-1, 1]).
 - f is π -periodic : $\forall x \in \mathbb{R}, f(x+\pi) = \operatorname{sh}(\sin(2x+2\pi)) = \operatorname{sh}(\sin(2x)) = f(x).$
 - f is not injective since it is periodic (we have found $x \neq x'$ such that f(x) = f(x'))
 - By composition, $x \mapsto \sin(2x)$ is strictly increasing over $[0, \frac{\pi}{4}]$, and $x \mapsto \operatorname{sh}(x)$ is strictly increasing over $[0, \frac{\pi}{4}]$. So by composition f is strictly increasing (therefore monotonic) over [0, a] with $a = \frac{\pi}{4}$.
 - Define the function $g(x) = \operatorname{sh}(x) x$. g is continuous and differentiable over [0, 1] and $g'(x) = \operatorname{ch}(x) 1 \ge 0$, $\forall x \ in[0, 1]$, Then we conclude that g is increasing and $\forall x \in [0, 1], g(x) \ge g(0) = 0$. So sh $(x) \ge x$.
 - Since f is strictly monotonic over $[0, \frac{\pi}{4}]$, it is injective. Therefore $\tilde{f} : [0, \frac{\pi}{4}] \to [0, \operatorname{sh}(1)]$ is surjective and injective, it is a bijection.
 - We know that \tilde{f} is strictly increasing over $[0, \frac{\pi}{4}]$, and $\forall x \in [0, \frac{\pi}{4}]$, $X := \sin(2x) \in [0, 1]$ and $\tilde{f}(X) \ge X$.

FIGURE 1 – Blue \tilde{f} , Orange y = x, Green \tilde{f}^{-1} .

$$- \tilde{f}^{-1}(x) = \frac{1}{2} \operatorname{arcsin}(\operatorname{argsh}(x)).$$

Polynomials (4 points)

Exercise 7.

Let $A = \{P \in \mathbb{R}_3[X] | \forall X, P(X+1) - P(X) = X^2 - 1\}.$ 1. Find all $P \in A$.

- 2. Without computing derivatives, provide $P^{(k)}(0), k = 0, \ldots, 3$.
- 3. Deduce $\sum_{k=0}^{n} (k-1)(k+1)$.
- 4. Given $P \in A$, show that there exists $a \in \mathbb{N}$ such that P(a) = P(1+a) and P(-a) = P(1-a).
- 5. Is the function $x \mapsto P(x)$ injective? Justify your answer.

- $P \in \mathbb{R}_3[X]$ so we write $P(X) = aX^3 + bX^2 + cX + d, a, b, c, d \in \mathbb{R}$. Solution. — Using the binomial theorem we find

$$P(X+1) - P(X) = a(X^3 + 3X^2 + 3X + 1) + b(X^2 + 2X + 1) + c(X+1) + d$$
$$- (aX^3 + bX^2 + cX + d)$$
$$= 3aX^2 + (3a + 2b)X + (a + b + c)$$
$$= X^2 - 1$$

by identification we find

$$a = \frac{1}{3}$$

$$b = -\frac{3}{2}a = -\frac{1}{2}$$

$$c = -1 - a - b = -\frac{5}{6}$$

Therefore $A = \{P \in \mathbb{R}_3[X] | P(X) = \frac{1}{3}X^3 - \frac{1}{2}X^2 - \frac{5}{6}X + d, d \in \mathbb{R}\}$ - By Taylor we have $P(X) = P(0) + P'(0)X + \frac{P''(0)}{2}X^2 + \frac{P'''(0)}{6}X^3$, by identification we find

$$\begin{cases} P(0) = d \\ P'(0) = -\frac{5}{6} \\ P''(0) = -1 \\ P'''(0) = 2 \end{cases}$$

 $-\forall X \in \mathbb{R}, P(X+1) - P(X) = X^2 - 1 = (X+1)(X-1)$. Therefore replace X by k and summing over $[\![0, n]\!]$ we get a telescopic sum :

$$\sum_{k=0}^{n} (k-1)(k+1) = \sum_{k=0}^{n} P(k+1) - \sum_{k=0}^{n} P(k) = P(n+1) - P(0) = \frac{1}{3}(n+1)^3 - \frac{1}{2}(n+1)^2 - \frac{5}{6}(n+1)$$

- We remark that $X^2 1$ has two roots: ± 1 . Then P(1+1) P(1) = 0 and P(-1+1) P(-1) = 0, in other words P(1) = P(1+1), and P(-1) = P(-1+1) so a = 1.
- Using previous question P(0) = P(1) so $x \mapsto P(x)$ is not injective (unless we restrict the domain).

Vector Subspace (4 points)

Exercise 8.

Consider the two subsets $F, G \subset \mathbb{R}^4$ given by :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 | x + y + z = 0, x + y + t = 0\}, \quad G = \{(x, y, z, t) \in \mathbb{R}^4 | x = 0, y = 0\}.$$

^{0.} Draw a cat next to your name on the first page once this is done.

- 1. Show that F, G are vector subspaces of \mathbb{R}^4 and determine a basis B_F of F, and a basis B_G of G.
- 2. Show that the family of vectors from B_F and B_G is a basis of \mathbb{R}^4 . We will called this basis B'.
- 3. Given $u \in \mathbb{R}^4$ such that $[u]_B = (a, b, c, d)$ where B is the canonical basis. Give $[u]_{B'}$.