Exam n ${ }^{0}$ 2023-2024-2 hours

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok!) and read entirely the exam before starting. ${ }^{0}$.
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (copies doubles) if multiple : for example $1 / 3$, $2 / 3,3 / 3$
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your ' x ' and ' n ' can be distinguished.
- Respecting all of the above is part of the exam grade. Provided rubric is indicative (changes may occur).

Warm-up exercises (8 points)

You are expected to provide some steps for those exercises. Little partial credit will be given for just writing the answer.

Exercise 1. Consider the polynomial $P(X)=X^{4}+2 X^{3}-2 X-1$. Factorize P in \mathbb{R} and in \mathbb{C}.
Exercise 2. Provide the Taylor series expansion of order 2 for $f(x)=\cos (x)+\ln (1-4 x)$ at $x=0$.
Exercise 3. Consider $f: A \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{x^{2}+4 x+4}$. Provide the domain of definition A. Sketch the graph of f (justify limit behaviors). Is f surjective? Is f injective ? Be as precise as possible in your answers.

Exercise 4. Consider $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that

$$
f(x, y, z, t)=(x+y+2 z+t, x+2 y+z-3 t, 3 x+y-z, x+12 z+16 t), \quad \forall(x, y, z, t) \in \mathbb{R}^{4}
$$

Find the preimage(s) by f of $(1,0,2,5)$, and give $\operatorname{ker}(f)$. We expect detailed steps and a proper solution written in the end.

Exercise 5. Consider $A=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y \geq 0, x+2 y+3 z=0, x+y \leq 0\right\}$. Is A a vector subspace of \mathbb{R}^{3} ? Justify your answer.

Functions (4 points)

Exercise 6.

For all $x \in \mathbb{R}$, define $f(x)=\operatorname{sh}(\sin (2 x))$.

1. Provide a co-domain so that f is surjective.
2. Study the parity of f.
3. Is f injective? Justify.
4. Without computing the derivative, show that f is monotonic over $[0, a]$, where $a>0$ is to be determined (provide the largest a possible).
5. Show that $\forall x \in[0,1], \operatorname{sh}(x) \geq x$.
6. Provide a restriction of f (denoted \tilde{f}) that is bijective.
7. Sketch the graph of \tilde{f}, as well as its reciprocal function.
8. (*For the challenge*) Find an expression of \tilde{f}^{-1}.

Polynomials (4 points)

Exercise 7.

Let $A=\left\{P \in \mathbb{R}_{3}[X] \mid \forall X, P(X+1)-P(X)=X^{2}-1\right\}$.

1. Find all $P \in A$.
2. Without computing derivatives, provide $P^{(k)}(0), k=0, \ldots, 3$.
3. Deduce $\sum_{k=0}^{n}(k-1)(k+1)$.
4. Given $P \in A$, show that there exists $a \in \mathbb{N}^{*}$ such that $P(a)=P(1+a)$ and $P(-a)=P(1-a)$.
5. Is the function $x \mapsto P(x)$ injective? Justify your answer.

Vector Subspace (4 points)

Exercise 8.

Consider the two subsets $F, G \subset \mathbb{R}^{4}$ given by :

$$
F=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x+y+z=0, x+y+t=0\right\}, \quad G=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x=0, y=0\right\}
$$

1. Show that F, G are vector subspaces of \mathbb{R}^{4} and determine a basis B_{F} of F, and a basis B_{G} of G.
2. Show that the family of vectors from B_{F} and B_{G} is a basis of \mathbb{R}^{4}. We will called this basis B^{\prime}.
3. Given $u \in \mathbb{R}^{4}$, we write $[u]_{B}=(a, b, c, d)$ where B is the canonical basis. Give $[u]_{B^{\prime}}$.

0 . Draw a cat next to your name on the first page once this is done.

