Exercise 1

1.	False. Take $f(x)=x^{3}$ on $(-1,1)$. Then 0 is a critical point but not a local extremum.	
2.	True. By definition, since x a global maximum, then for all $t \in[a, b], f(t) \leq f(x)$. Now, taking any neighbourhood V of x, we have as a result that for all $t \in V, f(t) \leq f(x)$ since $V \subset[a, b]$, proving that x is a local minimum.	
3.	True. Since P is of class \mathcal{C}^{2}, then a is an inflection of P if and only if $P^{\prime \prime}(a)=0$ and $P^{\prime \prime}$ changes sign around a. However, since $P^{\prime \prime}$ is of degree exactly 2 , there are only 3 possibles cases : - $P^{\prime \prime}$ has no root and thus P has no inflection point - $P^{\prime \prime}$ has a single root, but keep the same sign on \mathbb{R} so no inflection point for P either - $P^{\prime \prime}$ has two roots and change sign at each root, in which cases both roots are inflection points for P.	
4.	False. If the graph has a vertical tangent at ($a, f(a)$), then f is not differentiable at a	
5.	True. Let F be an antiderative of f. We know that $F(1)-F(0)=0$. We set $g(x)=F(x+0.5)-F(x)$ which is continuous since F is continuous. We have $g(0)=F(0.5)-F(0)$ and $g(0.5)=F(1)-F(0.5)=F(0)-F(0.5)=-g(0)$. Using IVT, there exists $\alpha \in(0,0.5)$ such that $g(0.5)=0$, which is what we wanted to prove since $g(0.5)=\int_{\alpha}^{\alpha+0.5} f(t) d t$	
6.	False. Take $f(x)=x$ on $[0,1]$.	
7.	True. Assume by contradiction that for all $x \in[0,1]$, we have $f(x) \leq g(x)$. Then, by using property of integrals, we would have $\int_{0}^{1} f(x) d x \leq \int_{0}^{1} g(x) d x$, which contradicts our hypothesis. As a result, there must exists $c \in[0,1]$ such that $f(c)>g(c)$.	
8.	False. Consider the function f defined on $[0,2]$ as : $f(x)= \begin{cases}x & \text { if } x \in[0,1) \\ x+1 & \text { if } x \in[1,2]\end{cases}$ Then f is strictly increasing on $[0,2]$ but is not bijective from $[0,2]$ to $[f(0), f(3)]=[0,3]$ since 1.5 has no pre-image. This statement becomes true if we add continuity as an hypothesis on f.	
9.	False. Let F be an antiderivative of f (that does exist since f is continous). We can rewrite g as $g(x)=F\left(x^{2}\right)-F(x)$. As such, g is differentiable and $g^{\prime}(x)=2 x F^{\prime}\left(x^{2}\right)-F(x)=2 x f\left(x^{2}\right)-f(x)$.	

Exercise 2

1.	We have $\lim _{x \rightarrow 0^{+}} \mathrm{e}^{-1 / x}=0$, thus $\lim _{0^{+}} f=2$. Therefore f can be extended continously at 0 .
2.	Let $x>0$. We have $\frac{f(x)-f(0)}{x-0}=\frac{f(x)-2}{x}=\mathrm{e}^{-1 / x} \underset{x \rightarrow 0^{+}}{\longrightarrow} 0$, hence f is differentiable at 0 and we have $f^{\prime}(0)=0$.
3.	We have $\frac{f(x)}{x}=\left(-\mathrm{e}^{-1 / x}+\frac{2}{x}\right) \underset{x \rightarrow+\infty}{\sim} \longrightarrow-1$ thus $a=1$. Moreover, $f(x)+x=-x\left(\mathrm{e}^{-1 / x}-1\right)+2$, and as $\mathrm{e}^{t}-1 \underset{x \rightarrow+\infty}{\sim} t$, then $\mathrm{e}^{-1 / x}-1 \underset{x \rightarrow+\infty}{\sim} \frac{-1}{x}$. So $-x\left(\mathrm{e}^{-1 / x}-1\right) \underset{x \rightarrow+\infty}{\sim}$. Consequently, $\lim _{x \rightarrow+\infty} f(x)+x=3$. Hence C_{f} has an asymptote near $+\infty$ with equation $y=-x+3$.
4.	$\forall x>0, f^{\prime}(x)=-\mathrm{e}^{-1 / x}-x \times \frac{1}{x^{2}} \mathrm{e}^{-1 / x}=\left(-1-\frac{1}{x}\right) \mathrm{e}^{-1 / x} .$
5. (a)	The function f is continuous on \mathbb{R}_{+}, and since f^{\prime} is <0 on \mathbb{R}_{+}^{*}, f is strictly decreasing on \mathbb{R}_{+}. Therefore, it establishes a bijection from \mathbb{R}_{+}to $J=f\left(\mathbb{R}_{+}\right)=\left(\lim _{+\infty} f, f(0)\right]=(-\infty, 2]$.
(b)	x $-\infty$ 2
	$f^{-1}(x){ }^{+\infty}$
(c)	We know that $C_{f^{-1}}$ is the image of C_{f} under the symmetry with respect to the line $y=x$. Now, the line with the equation $y=-x+3$ is an asymptote of C_{f} at $+\infty$, and this line is perpendicular to the line with the equation $y=x$. Therefore, the line with the equation $y=-x+3$ is an asymptote of $C_{f^{-1}}$ at $-\infty$.
(d)	We deduce from previous question that $f^{-1}(x) \underset{x \rightarrow-\infty}{=}-x+o(x)$, and therefore $f^{-1}(x) \underset{x \rightarrow-\infty}{\sim}-x$.

Exercise 3

1.	$I_{0}=\int_{0}^{1} \frac{x}{2} \mathrm{~d} x=\frac{1}{4} \quad \text { and } \quad I_{2}=\int_{0}^{1} \frac{x}{1+x^{2}} \mathrm{~d} x=\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{1}{2} \ln 2 .$
2. (a)	For all $x \in[0,1], f_{n}(x) \geq 0$ and the integral bounds are in increasing order hence $I_{n} \geq 0$.
(b)	For all $n \in \mathbb{N}, I_{n+1}-I_{n}=\int_{0}^{1}\left(f_{n+1}(x)-f_{n}(x)\right) \mathrm{d} x=\int_{0}^{1} \frac{(1-x) x^{n+1}}{\left(1+x^{n}\right)\left(1+x^{n+1}\right)} \mathrm{d} x \geq 0$ since we are taking the integral of a positive function on $[0,1]$. As a result, the sequence $\left(I_{n}\right)$ is increasing.
3. (a)	For all $n \in \mathbb{N}, J_{n}=\int_{0}^{1} \frac{x^{n+1}}{1+x^{n}} d x$. Now, for all $x \in[0,1], 0 \leq \frac{x^{n+1}}{1+x^{n}} \leq x^{n+1}$. We deduce : $0 \leq J_{n} \leq \int_{0}^{1} x^{n+1} d x$ that is $0 \leq J_{n} \leq \frac{1}{n+2}$. By the squeeze theorem, we have $\lim _{n \rightarrow+\infty} J_{n}=0$.
(b)	For all $n \in \mathbb{N}, J_{n}=\int_{0}^{1} x \mathrm{~d} x-I_{n}$ hence $I_{n}=\frac{1}{2}-J_{n}$. Therefore we have $\lim _{n \rightarrow+\infty} I_{n}=\frac{1}{2}$.
4. (a)	For all $n \in \mathbb{N}^{*}$, $\int_{0}^{1} \frac{x^{n+1}}{1+x^{n}} \mathrm{~d} x=\int_{0}^{1} x^{2} \times \frac{x^{n-1}}{1+x^{n}} \mathrm{~d} x=\int_{0}^{1} u(x) \times v^{\prime}(x) \mathrm{d} x \text { avec } u(x)=x^{2} \text { et } v(x)=\frac{1}{n} \ln \left(1+x^{n}\right) .$ Since the functions u and v are C^{1} on $[0,1]$, we can apply the integration by parts formula, which gives : $\int_{0}^{1} \frac{x^{n+1}}{1+x^{n}} \mathrm{~d} x=\left[\frac{x^{2}}{n} \ln \left(1+x^{n}\right)\right]_{0}^{1}-\int_{0}^{1} \frac{2 x}{n} \times \ln \left(1+x^{n}\right) \mathrm{d} x=\frac{\ln 2}{n}-\frac{2}{n} \int_{0}^{1} x \ln \left(1+x^{n}\right) \mathrm{d} x$
(b)	We can rewrite the result of the last question as : $\forall n \in \mathbb{N}^{*}, J_{n}=\frac{\ln 2}{n}-\frac{2 K_{n}}{n}$. Since $\lim _{n \rightarrow+\infty} K_{n}=0$, we have $\frac{2 K_{n}}{n} \underset{n \rightarrow+\infty}{=} o\left(\frac{\ln 2}{n}\right)$ and thus $J_{n} \underset{n \rightarrow+\infty}{\sim} \frac{\ln 2}{n}$. Eventually, $I_{n}-\frac{1}{2} \underset{n \rightarrow+\infty}{\sim}-\frac{\ln 2}{n}$.

