Exercise 1

-		
1.	False. Take $f(x) = x^3$ on $(-1, 1)$. Then 0 is a critical point but not a local extremum.	
2.	True. By definition, since x a global maximum, then for all $t \in [a, b], f(t) \leq f(x)$. Now, taking any neighbourhood V of x, we have as a result that for all $t \in V, f(t) \leq f(x)$ since $V \subset [a, b]$, proving that x is a local minimum.	
3.		
0.	True. Since P is of class C^2 , then a is an inflection of P if and only if $P''(a) = 0$ and P'' changes sign around a . However, since P'' is of degree exactly 2, there are only 3 possibles cases : — P'' has no root and thus P has no inflection point	
	P'' has a single root, but keep the same sign on \mathbb{R} so no inflection point for P either P'' has two roots and change sign at each root, in which cases both roots are inflection points for P .	
4.	False. If the graph has a vertical tangent at $(a, f(a))$, then f is not differentiable at a	
5.	True. Let F be an antiderative of f. We know that $F(1) - F(0) = 0$. We set $g(x) = F(x+0.5) - F(x)$ which is continuous since F is continuous.	
	We have $g(0) = F(0.5) - F(0)$ and $g(0.5) = F(1) - F(0.5) = F(0) - F(0.5) = -g(0)$. Using IVT, there exists $\alpha \in (0, 0.5)$ such that $g(0.5) = 0$, which is what we wanted to prove since $g(0.5) = \int_{\alpha}^{\alpha + 0.5} f(t) dt$.	
6.	False. Take $f(x) = x$ on $[0, 1]$.	
7.	True. Assume by contradiction that for all $x \in [0, 1]$, we have $f(x) \leq g(x)$. Then, by using property	
	of integrals, we would have $\int_0^1 f(x) dx \leq \int_0^1 g(x) dx$, which contradicts our hypothesis.	
	As a result, there must exists $c \in [0, 1]$ such that $f(c) > g(c)$.	
8.	False. Consider the function f defined on $[0, 2]$ as :	
	$f(x) = \begin{cases} x & \text{if } x \in [0, 1) \\ x + 1 & \text{if } x \in [1, 2] \end{cases}$	
	Then f is strictly increasing on $[0, 2]$ but is not bijective from $[0, 2]$ to $[f(0), f(3)] = [0, 3]$ since 1.5	
	has no pre-image.	
0	This statement becomes true if we add continuity as an hypothesis on f .	
9.	False. Let F be an antiderivative of f (that does exist since f is continous). We can rewrite g as $g(x) = F(x^2) - F(x)$. As such, g is differentiable and $g'(x) = 2xF'(x^2) - F(x) = 2xf(x^2) - f(x)$.	

Exercise 2

1.	We have $\lim_{x\to 0^+} e^{-1/x} = 0$, thus $\lim_{0^+} f = 2$. Therefore f can be extended continuously at 0.
2.	Let $x > 0$. We have $\frac{f(x) - f(0)}{x - 0} = \frac{f(x) - 2}{x} = e^{-1/x} \xrightarrow[x \to 0^+]{} 0$, hence f is differentiable at 0 and we
	have $f'(0) = 0$.
3.	We have $\frac{f(x)}{x} = \left(-e^{-1/x} + \frac{2}{x}\right) \underset{x \to +\infty}{\sim} -1$ thus $a = 1$.
	Moreover, $f(x) + x = -x(e^{-1/x} - 1) + 2$, and as $e^t - 1 \underset{x \to +\infty}{\sim} t$, then $e^{-1/x} - 1 \underset{x \to +\infty}{\sim} \frac{-1}{x}$.
	So $-x(e^{-1/x}-1) \underset{x \to +\infty}{\sim} 1$. Consequently, $\lim_{x \to +\infty} f(x) + x = 3$. Hence C_f has an asymptote near $+\infty$
	with equation $y = -x + 3$.
4.	$\forall x > 0, f'(x) = -e^{-1/x} - x \times \frac{1}{x^2}e^{-1/x} = \left(-1 - \frac{1}{x}\right)e^{-1/x}.$
5. (a)	The function f is continuous on \mathbb{R}_+ , and since f' is < 0 on \mathbb{R}^*_+ , f is strictly decreasing on \mathbb{R}_+ . Therefore, it establishes a bijection from \mathbb{R}_+ to $J = f(\mathbb{R}_+) = (\lim_{+\infty} f, f(0)] = (-\infty, 2].$
(b)	$x -\infty$ 2
	$+\infty$
	$f^{-1}(x)$
(c)	We know that $C_{f^{-1}}$ is the image of C_f under the symmetry with respect to the line $y = x$. Now, the line with the equation $y = -x + 3$ is an asymptote of C_f at $+\infty$, and this line is perpendicular to the line with the equation $y = x$. Therefore, the line with the equation $y = -x + 3$ is an asymptote of $C_{f^{-1}}$ at $-\infty$.
(d)	We deduce from previous question that $f^{-1}(x) = -x + o(x)$, and therefore $f^{-1}(x) \sim -x$.

Exercise 3

1.	$I_0 = \int_0^1 \frac{x}{2} dx = \frac{1}{4}$ and $I_2 = \int_0^1 \frac{x}{1+x^2} dx = \left[\frac{1}{2}\ln(1+x^2)\right]_0^1 = \frac{1}{2}\ln 2.$	
2. (a)	For all $x \in [0, 1]$, $f_n(x) \ge 0$ and the integral bounds are in increasing order hence $I_n \ge 0$.	
(b)	For all $n \in \mathbb{N}$, $I_{n+1} - I_n = \int_0^1 (f_{n+1}(x) - f_n(x)) dx = \int_0^1 \frac{(1-x)x^{n+1}}{(1+x^n)(1+x^{n+1})} dx \ge 0$ since we are taking the integral of a positive function on $[0, 1]$. As a result, the sequence (I_n) is increasing.	
3. (a)	For all $n \in \mathbb{N}$, $J_n = \int_0^1 \frac{x^{n+1}}{1+x^n} dx$. Now, for all $x \in [0,1]$, $0 \le \frac{x^{n+1}}{1+x^n} \le x^{n+1}$.	
	We deduce : $0 \le J_n \le \int_0^1 x^{n+1} dx$ that is $0 \le J_n \le \frac{1}{n+2}$.	
	By the squeeze theorem, we have $\lim_{n \to +\infty} J_n = 0$.	
(b)	For all $n \in \mathbb{N}$, $J_n = \int_0^1 x \mathrm{d}x - I_n$ hence $I_n = \frac{1}{2} - J_n$. Therefore we have $\lim_{n \to +\infty} I_n = \frac{1}{2}$.	
4. (a)	For all $n \in \mathbb{N}^*$,	
	$\int_0^1 \frac{x^{n+1}}{1+x^n} \mathrm{d}x = \int_0^1 x^2 \times \frac{x^{n-1}}{1+x^n} \mathrm{d}x = \int_0^1 u(x) \times v'(x) \mathrm{d}x \text{ avec } u(x) = x^2 \text{ et } v(x) = \frac{1}{n} \ln(1+x^n).$	
	Since the functions u and v are C^1 on $[0, 1]$, we can apply the integration by parts formula, which gives :	
	$\int_0^1 \frac{x^{n+1}}{1+x^n} \mathrm{d}x = \left[\frac{x^2}{n}\ln(1+x^n)\right]_0^1 - \int_0^1 \frac{2x}{n} \times \ln(1+x^n) \mathrm{d}x = \frac{\ln 2}{n} - \frac{2}{n} \int_0^1 x \ln(1+x^n) \mathrm{d}x.$	
(b)	We can rewrite the result of the last question as : $\forall n \in \mathbb{N}^*$, $J_n = \frac{\ln 2}{n} - \frac{2K_n}{n}$.	
	We can rewrite the result of the last question as : $\forall n \in \mathbb{N}^*$, $J_n = \frac{\ln 2}{n} - \frac{2K_n}{n}$. Since $\lim_{n \to +\infty} K_n = 0$, we have $\frac{2K_n}{n} \underset{n \to +\infty}{=} o\left(\frac{\ln 2}{n}\right)$ and thus $J_n \underset{n \to +\infty}{\sim} \frac{\ln 2}{n}$.	
	Eventually, $I_n - \frac{1}{2} \underset{n \to +\infty}{\sim} - \frac{\ln 2}{n}$.	