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Exercise 1

1. False. Take f(x) = x3 on (−1, 1). Then 0 is a critical point but not a local extremum.

2. True. By definition, since x a global maximum, then for all t ∈ [a, b], f(t) ≤ f(x). Now, taking any
neighbourhood V of x, we have as a result that for all t ∈ V, f(t) ≤ f(x) since V ⊂ [a, b], proving
that x is a local minimum.

3. True. Since P is of class C2, then a is an inflection of P if and only if P ′′(a) = 0 and P ′′ changes
sign around a. However, since P ′′ is of degree exactly 2, there are only 3 possibles cases :

— P ′′ has no root and thus P has no inflection point
— P ′′ has a single root, but keep the same sign on R so no inflection point for P either
— P ′′ has two roots and change sign at each root, in which cases both roots are inflection points

for P .
4. False. If the graph has a vertical tangent at (a, f(a)), then f is not differentiable at a

5. True. Let F be an antiderative of f . We know that F (1)−F (0) = 0. We set g(x) = F (x+0.5)−F (x)
which is continuous since F is continuous.
We have g(0) = F (0.5)− F (0) and g(0.5) = F (1)− F (0.5) = F (0)− F (0.5) = −g(0).
Using IVT, there exists α ∈ (0, 0.5) such that g(0.5) = 0, which is what we wanted to prove since

g(0.5) =
∫ α+0.5

α
f(t)dt.

6. False. Take f(x) = x on [0, 1].
7. True. Assume by contradiction that for all x ∈ [0, 1], we have f(x) ≤ g(x). Then, by using property

of integrals, we would have

∫ 1

0
f(x)dx ≤

∫ 1

0
g(x)dx, which contradicts our hypothesis.

As a result, there must exists c ∈ [0, 1] such that f(c) > g(c).
8. False. Consider the function f defined on [0, 2] as :

f(x) =
{
x if x ∈ [0, 1)
x+ 1 if x ∈ [1, 2]

Then f is strictly increasing on [0, 2] but is not bijective from [0, 2] to [f(0), f(3)] = [0, 3] since 1.5
has no pre-image.
This statement becomes true if we add continuity as an hypothesis on f .

9. False. Let F be an antiderivative of f (that does exist since f is continous). We can rewrite g as
g(x) = F (x2)− F (x). As such, g is differentiable and g′(x) = 2xF ′(x2)− F (x) = 2xf(x2)− f(x).



Exercise 2

1. We have lim
x→0+

e−1/x = 0, thus lim
0+

f = 2. Therefore f can be extended continously at 0.

2.
Let x > 0. We have

f(x)− f(0)
x− 0 = f(x)− 2

x
= e−1/x −→

x→0+
0, hence f is differentiable at 0 and we

have f ′(0) = 0.

3.
We have

f(x)
x

=
(
−e−1/x + 2

x

)
∼

x→+∞
−→ −1 thus a = 1.

Moreover, f(x) + x = −x(e−1/x − 1) + 2, and as et − 1 ∼
x→+∞

t, then e−1/x − 1 ∼
x→+∞

−1
x

.

So −x(e−1/x− 1) ∼
x→+∞

1. Consequently, lim
x→+∞

f(x) +x = 3. Hence Cf has an asymptote near +∞
with equation y = −x+ 3.

4.
∀x > 0, f ′(x) = −e−1/x − x× 1

x2 e−1/x =
(
−1− 1

x

)
e−1/x.

5. (a) The function f is continuous on R+, and since f ′ is < 0 on R∗+, f is strictly decreasing on R+.
Therefore, it establishes a bijection from R+ to J = f(R+) = (lim

+∞
f, f(0)] = (−∞, 2].

(b)
x

f−1(x)

−∞ 2

+∞+∞

00

(c) We know that Cf−1 is the image of Cf under the symmetry with respect to the line y = x. Now, the
line with the equation y = −x+ 3 is an asymptote of Cf at +∞, and this line is perpendicular to
the line with the equation y = x. Therefore, the line with the equation y = −x+ 3 is an asymptote
of Cf−1 at −∞.

(d) We deduce from previous question that f−1(x) =
x→−∞

−x+ o(x), and therefore f−1(x) ∼
x→−∞

−x.
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Exercise 3

1.
I0 =

∫ 1

0

x

2 dx = 1
4 and I2 =

∫ 1

0

x

1 + x2 dx =
[1

2 ln(1 + x2)
]1

0
= 1

2 ln 2.

2. (a) For all x ∈ [0, 1], fn(x) ≥ 0 and the integral bounds are in increasing order hence In ≥ 0.

(b)
For all n ∈ N, In+1 − In =

∫ 1

0
(fn+1(x) − fn(x))dx =

∫ 1

0

(1− x)xn+1

(1 + xn)(1 + xn+1)dx ≥ 0 since we are

taking the integral of a positive function on [0, 1]. As a result, the sequence (In) is increasing.

3. (a)
For all n ∈ N, Jn =

∫ 1

0

xn+1

1 + xn
dx. Now, for all x ∈ [0, 1], 0 ≤ xn+1

1 + xn
≤ xn+1.

We deduce : 0 ≤ Jn ≤
∫ 1

0
xn+1 dx that is 0 ≤ Jn ≤

1
n+ 2 .

By the squeeze theorem, we have lim
n→+∞

Jn = 0.

(b)
For all n ∈ N, Jn =

∫ 1

0
x dx− In hence In = 1

2 − Jn. Therefore we have lim
n→+∞

In = 1
2 .

4. (a) For all n ∈ N∗,∫ 1

0

xn+1

1 + xn
dx =

∫ 1

0
x2 × xn−1

1 + xn
dx =

∫ 1

0
u(x)× v′(x) dx avec u(x) = x2 et v(x) = 1

n
ln(1 + xn).

Since the functions u and v are C1 on [0, 1], we can apply the integration by parts formula, which
gives :

∫ 1

0

xn+1

1 + xn
dx =

[
x2

n
ln(1 + xn)

]1

0
−
∫ 1

0

2x
n
× ln(1 + xn)dx = ln 2

n
− 2
n

∫ 1

0
x ln(1 + xn)dx.

(b)
We can rewrite the result of the last question as : ∀n ∈ N∗, Jn = ln 2

n
− 2Kn

n
.

Since lim
n→+∞

Kn = 0, we have
2Kn

n
=

n→+∞
o

( ln 2
n

)
and thus Jn ∼

n→+∞

ln 2
n

.

Eventually, In −
1
2 ∼
n→+∞

− ln 2
n

.
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