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Exercise 1.

1. See Figure 1.
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Figure 1 – Graph of function f of Exercise 1.

2. f is not injective: the horizontal line y = 1 intersects the graph of f twice.

3. f is surjective: if we project the points of the graph of f on the y-axis, we obtain all the non-negative numbers:
f
(

[−1, 1]
)

= R+ = codomain of f .

4.

f
(

[0, 1]
)

= [0, 1], f
(

[−1, 0]
)

= [1,+∞),

f
(

[−1, 0]
)

= {0} ∪ [1,+∞), f
(

(−1, 0) ∪ (0, 1)
)

= (0, 1) ∪ (1,+∞),

f [−1]
(

[1,+∞)
)

= [−1, 0) ∪ {1}, f [−1]
(

(1,+∞)
)

= (−1, 0),

f [−1]
(

[0, 1]
)

= {−1} ∪ [0, 1], f [−1]
(

[0, 1)
)

= [0, 1).

Exercise 2.



Let p ∈ N and k ∈ N
∗.

(

p+ k + 1

p+ 1

)

−

(

p+ k

p+ 1

)

=
(p+ k + 1)!

(p+ 1)!k!
−

(p+ k)!

(p+ 1)!(k − 1)!

=
(p+ k + 1)!− (p+ k)!k!

(p+ 1)!k

=
(p+ k)!

(

(p+ k + 1)− k
)

(p+ 1)!k!

=
(p+ k)!(p+ 1)

(p+ 1)!k!

=
(p+ k)!

p!k!

=

(

p+ k

p

)

.

Let n, p ∈ N such that n > p.

a) For k ∈ N
∗ define

xk =

(

p+ k + 1

p+ 1

)

.

The sum we’re trying to compute is:
n−p
∑

k=1

(xk+1 − xk).

We recognize a telescopic sum, and we hence obtain:

n−p
∑

k=1

(xk+1 − xk) = xn−p+1 − x1 =

(

n+ 1

p+ 1

)

−

(

p+ 1

p+ 1

)

=

(

n+ 1

p+ 1

)

− 1.

b)

n−p
∑

k=0

(

p+ k

p

)

=

(

p

p

)

+

n−p
∑

k=1

(

(

p+ k + 1

p+ 1

)

−

(

p+ k

p+ 1

)

)

by Question 1

= 1 +

(

n+ 1

p+ 1

)

− 1 by the previous question

=

(

n+ 1

p+ 1

)

.

In the case p = n, the left hand side of (∗) is:

0
∑

k=0

(

p+ k

p

)

=

(

p

p

)

= 1

and the right hand side of (∗) is:
(

n+ 1

n+ 1

)

= 1.

Hence Equality (∗) is still true when p = n.

In the special case p = 1: applying the result of Question 2 yields

∀n ∈ N
∗,

n−1
∑

k=0

(

k + 1

1

)

=

(

n+ 1

2

)

.

Now,

∀k ∈ N,

(

k + 1

1

)

=
(k + 1)!

1!k!
= (k + 1),



and
(

n+ 1

2

)

=
(n+ 1)!

2!(n− 1)!
=

n(n+ 1)

2
.

Hence we obtain:

∀n ∈ N
∗,

n−1
∑

k=0

(k + 1) =
n(n+ 1)

2
.

Now the sum that appears on the left hand side can be written (using a shift of index) as

n−1
∑

k=0

(k + 1) =

n
∑

k=1

k,

and this sum is well-known to be equal to n(n+ 1)/2.

Let n ∈ N with n ≥ 2. From the result of Question 2 we conclude:

n−2
∑

k=0

(

k + 2

2

)

=

(

n+ 1

3

)

.

Now,

∀k ∈ N,

(

k + 2

2

)

=
(k + 2)!

2!k!
=

(k + 1)(k + 2)

2
,

and
(

n+ 1

3

)

=
(n+ 1)!

3!(n− 2)!
=

(n− 1)n(n+ 1)

6
.

Hence
n−2
∑

k=0

(k + 1)(k + 2) =
(n− 1)n(n+ 1)

3
,

and using a shift of index,

n−2
∑

k=0

(k + 1)(k + 2) =
n
∑

k=2

k(k − 1) =
n
∑

k=1

k(k − 1) =
n
∑

k=1

(

k2 − k
)

=
(n− 1)n(n+ 1)

3
,

hence

n
∑

k=1

k2 =
(n− 1)n(n+ 1)

3
+

n
∑

k=1

k

=
(n− 1)n(n+ 1)

3
+

n(n+ 1)

2

=
n(n+ 1)

(

2(n− 1) + 3
)

6

=
n(n+ 1)(2n+ 1)

6
.

Notice that this formula is also valid in the case n = 1, so that we finally conclude:

∀n ∈ N
∗, Sn =

(n+ 1)n(2n+ 1)

6
.

Exercise 3. Let x ∈ R. Then

sin(3x) = cos(x) ⇐⇒ cos
(

3x−
π

2

)

= cos(x)

⇐⇒ ∃k ∈ Z,
(

3x−
π

2
= x+ 2kπ or 3x−

π

2
= −x+ 2kπ

)

⇐⇒ ∃k ∈ Z,
(

2x =
π

2
+ 2kπ or 4x =

π

2
+ 2kπ

)

⇐⇒ ∃k ∈ Z,
(

x =
π

4
+ kπ or x =

π

8
+ k

π

2

)



We now select the solutions that lie in [0, 2π] and we obtain: the set of solutions is:

{

π

4
,
5π

4
,
π

8
,
5π

8
,
9π

8
,
13π

8

}

.

Exercise 4. Let x, y ∈ B such that g(x) = g(y). We need to show that x = y.
Since x, y ∈ B and since f is surjective, there exists a, b ∈ A such that f(a) = x and f(b) = y. We then have:

(g ◦ f)(a) = g(x) = g(y) = (g ◦ f)(b).

Since g ◦ f is injective, we conclude that a = b. Hence

x = f(a) = f(b) = y

and indeed x = y.

Exercise 5.

1. Clearly, f(1) = 0, hence 1 is a root of f . We perform the following long division:

x4 − 4x3 + 2x2 + 4x− 3

x− 1 x5−5x4+6x3+2x2−7x+3

−
(

x5− x4
)

−4x4+6x3+2x2−7x+3

−
(

−4x4+4x3
)

2x3+2x2−7x+3

−
(

2x3−2x2
)

4x2−7x+3

−
(

4x2−4x
)

−3x+3

−
(

−3x+3
)

0

We denote by g1 the quotient:

∀x ∈ R, g1(x) = x4 − 4x3 + 2x2 + 4x− 3.

Now, g1(1) = 0, so we divide g1(x) by x− 1:

x3 − 3x2 − x+ 3

x− 1 x4−4x3+2x2+4x−3

−
(

x4− x3
)

−3x3+2x2+4x−3

−
(

−3x3+3x2
)

− x2+4x−3

−
(

− x2+ x
)

3x−3

−
(

3x−3
)

0

We denote by g2 the quotient:
∀x ∈ R, g2(x) = x3 − 3x2 − x+ 3.



Now, g2(1) = 0, so we divide g2(x) by (x− 1):

x2 − 2x− 3

x− 1 x3−3x2− x+3

−
(

x3− x2
)

−2x2− x+3

−
(

−2x2+2x
)

−3x+3

−
(

−3x+3
)

0

We denote by g3 the quotient:
∀x ∈ R, g3(x) = x2 − 2x− 3.

Now, g3(1) 6= 0, so the multiplicity of 1 is 3.

2. At this point we have:
∀x ∈ R, f(x) = (x− 1)3

(

x2 − 2x− 3
)

.

Hence the other roots of f are that of g3, namely 3 and −1, both of multiplicity 1.

3. The real factored form of f is hence:

∀x ∈ R, f(x) = (x− 1)3(x+ 1)(x− 3).

Exercise 6. We notice that the sequence (un)n≥1 only has positive terms, hence we can use the quotient of two
consecutive terms to determine its variations.
Let n ∈ N

∗. Then:
un+1

un

=
(n+ 1)!

2n+1

2n

n!
=

(n+ 1)

2
≥ 1.

Hence the sequence (un)n≥1 is non-decreasing.

Exercise 7. Let h ∈ [−1,+∞). For n ∈ N we denote by (Pn) the following proposition:

(Pn) (1 + h)n ≥ 1 + nh.

• base case: (P0) is obviously true, as (P0) reads as:

(1 + h)0 ≥ 1 + 0h.

• inductive step: assume that (Pn) is true for some n ∈ N. By the inductive hypothesis (Pn) we have:
(1 + h)n ≥ 1 + nh. Since 1 + h ≥ 0 (very important hypothesis here!), we can multiply the inequality (Pn)
by the non-negative number 1 + h and we obtain:

(1 + h)(1 + h)n =≥ (1 + h)(1 + nh) = 1 + nh+ h+ nh2 = 1 + (n+ 1)h+ nh2 ≥ 1 + (n+ 1)h,

hence
(1 + h)n+1 ≥ 1 + (n+ 1)h,

hence (Pn+1) is true.


