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Exercise 1.
1. See Figure 1.
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Figure 1 — Graph of function f of Exercise 1.

2. f is not injective: the horizontal line y = 1 intersects the graph of f twice.

3. f is surjective: if we project the points of the graph of f on the y-axis, we obtain all the non-negative numbers:
f([~1,1]) = Ry = codomain of f.

4.
£([0,1]) = [0,1], F([=1,0)) = [1,+00),
F([=1,0)) = {0} U [1, +00), F((=1,0)U(0,1)) = (0,1) U (1, +00),
FEU([, +00)) = [-1,0) U {1}, FEU((1,+00)) = (~1,0),
FEU((0,1]) = {=1} U o, 1], f71([0,1)) = [0,1).

Exercise 2.



Let p € N and k € N*.
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Let n,p € N such that n > p.
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The sum we’re trying to compute is:

We recognize a telescopic sum, and we hence obtain:
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In the case p = n, the left hand side of (x) is:

and the right hand side of (x) is:

Hence Equality () is still true when p = n.
In the special case p = 1: applying the result of Question 2 yields
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Hence we obtain: )
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Now the sum that appears on the left hand side can be written (using a shift of index) as
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and this sum is well-known to be equal to n(n + 1)/2.

Let n € N with n > 2. From the result of Question 2 we conclude:
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Notice that this formula is also valid in the case n = 1, so that we finally conclude:
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Exercise 3. Let z € R. Then
sin(3z) = cos(x) <= cos (396 - g) = cos(z)
<— dk € Z, (Sx—g:x—i—Qkﬂor 333‘—%:—.%’4-2]671’)
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We now select the solutions that lie in [0, 27] and we obtain: the set of solutions is:
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Exercise 4. Let =,y € B such that g(z) = g(y). We need to show that = y.
Since z,y € B and since f is surjective, there exists a,b € A such that f(a) = z and f(b) = y. We then have:

(go f)a) = g(x) = g(y) = (go f)(b).

Since g o f is injective, we conclude that a = b. Hence

v = fla) = £() =

and indeed x = y.

Exercise 5.

1. Clearly, f(1) =0, hence 1 is a root of f. We perform the following long division:
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We denote by g1 the quotient:
Ve €R, gi(x) = 2* — 43 + 222 + 42 - 3.
Now, ¢1(1) = 0, so we divide g1 (x) by = — 1:
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We denote by gs the quotient:
Vr €R, go(x) = 2® — 32% —x + 3.



Now, g2(1) = 0, so we divide go(z) by (z — 1):
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We denote by g3 the quotient:
Vo € R, g3(z) = z? — 22 — 3.

Now, g3(1) # 0, so the multiplicity of 1 is 3.

2. At this point we have:
Vz €R, f(z)=(z—1)*(z® -2z —3).

Hence the other roots of f are that of g3, namely 3 and —1, both of multiplicity 1.

3. The real factored form of f is hence:
Ve €R, f(x) = (z—1)*(z+1)(z - 3).

Exercise 6. We notice that the sequence (uy,),>1 only has positive terms, hence we can use the quotient of two
consecutive terms to determine its variations.
Let n € N*. Then:
Upt1 _ (n+1)I2"  (n+1) >
w,  2ntl pl 2 =7

Hence the sequence (uy,),>1 is non-decreasing.

Exercise 7. Let h € [-1,+00). For n € N we denote by (P,) the following proposition:
(P,) (I+h)">1+nh.
e base case: (P) is obviously true, as (Py) reads as:

(14+h)° >1+0h.

e inductive step: assume that (P,) is true for some n € N. By the inductive hypothesis (P,) we have:
(14 h)™ > 14 nh. Since 1+ h > 0 (very important hypothesis here!), we can multiply the inequality (P,)
by the non-negative number 1 + A and we obtain:

(L+h) (1 +h)"=>1+h)(1+nh)=1+nh+h+nh®>=1+ (n+1)h+nh®>>1+ (n+1)h,

hence
(14 h)"™ > 14 (n+1)h,

hence (P,41) is true.



