
FIMI Department - SCAN

Year 2022-2023

MNTES - S2 Written Exam 1

April 7th, 2023, 16h. Duration: 1 hour and 30 minutes

Guidelines
Not only your results, but especially your ability to clearly justify them and then critically analyze them will

be evaluated. You are also reminded to take care in the spelling and presentation of your papers. No documents
or calculators are allowed. The scale is given as an indication. There are three independent problems.

Exercise 1: Surface of a 2D shape (⇠ 4 pts.)
Consider a domain D above the line y = 1, and under the curve y = e

�x+1
, for x 2 [0, 1].

1. Sketch the domain D.

2. Express the domain D as normal in x, therefore using the format:

D = {(x, y) 2 R2 | a < x < b and ↵(x) < y < �(x)}

with a, b,↵,� to be determined.

3. Calculate the area A of D.

4. What would change if you have to use the other choice? Provide the alternative integral expression of A, with

the bounds explicitly (no computation expected).

Exercise 2: Easter chocolate eggs (⇠ 7 pts.)
It’s almost Easter and time for Easter eggs! While enjoying your delicious chocolate eggs, you may wonder about their

mass. Did you know that we can provide an equation for the egg? Let us consider the 2-dimensional equation of the

egg provided by Hügelschäffer. The egg is bounded by two circles: one centered at O of radius b, and one centered at

(d, 0) of radius a (see figure 1). The shape of the egg is given by the Cartesian equation

y
2 =

b
2(a2 � (x� d)2)

a2 � d2 + 2dx
.

In this problem we set a = 6 cm, b = 4 cm, and d = 1 cm, which leads to the egg in figure 1.

Figure 1: Sketch of the egg (in black). The two dashed circles are used to create the shape of the egg:

one centered at O of radius b (blue), and one centered at (d, 0) of radius a (orange).
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1. Show that the values x such that
b
2(a2 � (x� d)2)

a2 � d2 + 2dx
= 0 are x1 = d� a and x2 = d+ a. Do these values match

what is expected from figure 1 above? Explain your reasoning.

2. Determine the expression of the 2-dimensional domain E bounded by the egg’s equation, as normal in x, i.e.,

express it in the format:

E = {(x, y) 2 R2 | ↵ < x < � and �(x) < y < �(x)},

with ↵, �, �, � to be determined.

3. We consider the surface mass density of the egg � = �0

p
35 + 2x g/cm

2
. Express the 2-dimensional mass M2D

as a double integral based on your description of E.

4. Rewrite the integrand of M2D in the form of
p
1�A2 where A is a function of x to be determined.

5. The mass of the 3-dimensional egg is M3D = 2⇡M2D. Calculate the 3D mass of the egg. Hint: use the previous

question and perform a change of variables that involves a trigonometric function.

6. Without calculations, what can you say about the coordinates of the center of mass of the 3D egg ?

Exercise 3: Archimedes’ principle (⇠ 9 pts.)

We propose to verify the Archimedes’ principle (in other words the buoyancy of an object immersed into a fluid) on

an example.

We consider a half-ball (B) immersed under water (see figure 2). The surface of this half-ball consists of a half-

sphere (⌃) of radius R, of center O, taken as origin of the reference frame, and of a disk (D) (upper face) included in

the plane of equation z = 0.
We consider the following conventions:

• the constant µ (kg.m
�3

) denotes the volumetric density of water, the constant g (N.kg
�1

) denotes the acceleration

of gravity, and P0 (N.m
�2

) denotes the pressure at the surface of the water

• the Cartesian basis is given by (O,~ex,~ey,~ez), where ~ez is the vertical ascending

• the spherical coordinates (r, ✓,') are associated to the local frame (~er,~e✓,~e'), and
��!
OM = r ~er.

• the cylindrical coordinates (r, ✓, z) of axis (Oz) are associated to the local frame (~er,~e✓,~ez), and
��!
OM = r ~er+z ~ez.

Look closely at Figure 2 with all notations.

Figure 2: Diagram of the half-ball and associated coordinate systems.

1. Intervals of coordinates. Specify the intervals of the following:

(a) Intervals for the spherical coordinates (r, ✓,') for points belonging to the half-ball (filled half-sphere) (B),

(b) Intervals for the cartesian coordinates (x, y, z) for points belonging to the half-ball (filled half-sphere) (B)
(several choices are possible),
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(c) Intervals for the spherical coordinates (r, ✓,') for the points on the surface of the half-sphere (⌃),

(d) Intervals for the cylindrical coordinates (r, ✓, z) for the points on the surface of the disk (D).

2. Computation of the mass. Express the mass of the half-ball, M , as a triple integral (specify your choice of

coordinates) then compute it.

The goal is to compute all the forces exerted on the half-ball and to compare them. To that aim we will compute the

weight ~P , and two contact forces exerted by the water on the immersed half-ball: ~F1 acting on surface (⌃), and ~F2

acting on surface (D).

3. Compute F1 =

ZZ

D
P0 dS, dS being the elementary surface of the disk D . Using question 1, specify your choice

of coordinates, write the integral bounds and dS explicitly in that case.

4. Compute F2 =

ZZ

⌃
[P0 � µgz] cos ✓ dS, dS being the elementary surface of the half-sphere ⌃. Using question 1,

specify your choice of coordinates, write the integral bounds and dS explicitly in that case. Don’t forget to
express the function to integrate within the chosen coordinate system.

5. Computation of forces. Using results from previous questions, compute ~P = �Mg~ez,
~F1 = �F1~ez, and

~F2 = �F2~ez. Compare ~F1 + ~F2 to ~P . Comment on the result.

6. To go further. The contact force ~F2 on the half-sphere could have other components. What calculations are

needed to show that the other components of ~F2 are nil? You will give details of the literal expressions to be

calculated, but you will not perform these calculations.

INSA Lyon, SCAN 1st April 7 2023 Duration: 1h30



Solutions and Grading Scheme for IE1S2
SCAN First 2022-2023 - 07/04/2023

Instructions: items in red are graded, items in black are for information only
EX1 4 pts + 0,5 bonus

1.1 Tot: 1 pt 

0.5  
(exp function + correct 

domain) 

0.5  
(ref. points)

Tot: 1pt 

0,5 range in x 
0,5 range in y

Tot: 1pt 

0,25 

0,25 + 0,25 

0,25

Tot: 1pt + 0.5 bonus 

0,5 

0,5 

(Bonus: 0,5)

1.4 

Write is as normal in :     

 

(Bonus) The domain is simple

y D = {(x , y) ∈ ℝ | 0 ≤ y ≤ e, 0 ≤ x ≤ 1 − ln(y)}

A = ∬D
dS = ∫

e

y=1 ∫
1−ln(y)

x=0
d x dy

1.2 

D = {(x , y) ∈ ℝ | 0 ≤ x ≤ 1, 1 ≤ y ≤ e−x+1}
1.3 

 

 

A = ∬D
dS = ∫

1

x=0 ∫
e−x+1

y=1
d x dy

A = ∫
1

0
(e−x+1 − 1) d x = [−e−x+1 − x]

1

0

A = e − 2 ≈ 0.7

EX2 7 pts

Tot: 1 pt 

0.5  
(for at least the 1st 

condition) 

0.25 
(for the solution of the 

first condition) 

0.25  
(For the conclusion)

2.1 

 

 

 

Since the egg is bounded by the yellow circle, the point  matches the intersection 
of the orange circle with the 

b2 (a2 − (x − d)2)
a2 − d2 + 2x d

= 0

⟹ b2 (a2 − (x − d)2) = 0 and a2 − d2 + 2x d ≠ 0

x = d ± a and x ≠ a2 − d2

2d

x = d ± a
x − axis



Tot: 1pt 

0,25 per bound 
(in either numerical or 

analytical form) 

Tot: 1pt 

0.5 
(correct setup of the 

integral) 
0.25 (if wrong bounds 

agreeing with 
previous)  

0.5 
(for single integral or 

equivalent form)

Tot: 1pt 

0.75 

0.25

Tot: 1pt 

0.25 
0.25 

0.5

2.6 

The 3D shape is symmetrical in rotation w.r.t. the      (or equiv. formulation) 
The mass density only depends on                                          (or equiv. formulation) 

       the center of mass is on the  : 

x − axis
x

⟹ x − axis G (Gx, Gy = 0, Gz = 0)

2.4 

 

with   

M2D = 8σ0 ∫
7

−5
36 − (x − 1)2 d x = 8σ0 ∫

7

−5
6 1 − ( x − 1

6 )
2

d x

A = x − 1
6

2.3 

 

 

M2D = ∬E
σ dS = ∫

7

x=−5 ∫
4 36 − (x − 1)2

35 + 2x

y=−4 36 − (x − 1)2
35 + 2x

35 + 2x dy d x

M2D = 8σ0 ∫
7

−5
36 − (x − 1)2 d x

2.5 

Change of variable:     

New bounds:           and       
(Give all the points if equivalent correct change of variable other than trigonometric) 

  =    

=      =    =   

=  grams 

x − 1
6 = cos(θ ) ⟹ d x = − 6 sin(θ ) dθ

x = − 5 ⟹ θ = π x = 7 ⟹ θ = 0

M3D = 2π × 8σ0 ∫
7

−5
6 1 − ( x − 1

6 )
2

d x 96π σ0 ∫
0

π
6 1 − cos2 θ (−6)sin θ dθ

576π σ0 ∫
π

0
sin2 θ dθ 576π σ0 ∫

π

0 ( 1
2 − cos(2θ )

2 ) dθ 576π σ0 [ θ
2 − sin(2θ )

4 ]
π

0

288π2σ0

Tot: 2pt 

0,5 
(for correct change of 

variable.  
Accept as correct if 

 instead of ) 

0,5 

0,75 

0,25 
(only with units)

sin() cos()

2.2 

 

or 

E = (x , y) ∈ ℝ ∣ d − a ≤ x ≤ d + a , b
a2 − (x − d)2

a2 − d2 + 2x d
≤ y ≤ − b

a2 − (x − d)2

a2 − d2 + 2x d

E = (x , y) ∈ ℝ ∣ − 5 ≤ x ≤ 7, 4 36 − (x − 1)2

35 + 2x
≤ y ≤ − 4 36 − (x − 1)2

35 + 2x



EX3 10 pts

Total: 2,5 pt 

0,5 

1 

0,5 

0,5

Total: 1,5pt 

0,25 

0,5 

0,5 

0,25 
(only with units)

3.1 

a) 

       

b) 

        

(accept the two other choices on y and z) 

c) 

       

d) 

       

ℬ(r, θ, φ) :
0 ⩽ r ⩽ R
π
2 ⩽ θ ⩽ π

0 ⩽ φ ⩽ 2π

ℬ(x , y, z ) :

−R ⩽ x ⩽ R

− R2 − x2 ⩽ y ⩽ R2 − x2

− R2 − x2 − y2 ⩽ z ⩽ R2 − x2 − y2

Σ(r, θ, φ) :
r = R
π
2 ⩽ θ ⩽ π

0 ⩽ φ ⩽ 2π

-(r, θ, z ) :
0 ⩽ r ⩽ R
0 ⩽ θ ⩽ 2π
z = 0

3.2 

,     using spherical (easiest) and taking  to be a constant (homogeneous): 

  

 

   kilograms 

(Full points to other coordinates based correct solutions. Non-integral based solutions are not 
accepted)

M = ∭ℬ
μdV μ

M = μ∫
2π

φ=0 ∫
π

θ=π/2 ∫
R

r=0
r2 sin(θ )dr dθ dφ = μ∫

2π

0
dφ ⋅ ∫

π

π/2
sin(θ ) dθ ⋅ ∫

R

0
r2 dr

= 2πμ
R3

3 [−cos θ]π
π/2

= 2R3

3 πμ



Total: 1pt 

0,25+0,25 

0,5

Total: 3pt 

0,25+0,25+0,25 

0,25 

1 

0,5+0,5

Total: 1pt 

0,25 

0,5 

0,25 

3.3 

,          

taking  as a constant and using the polar coordinates determined in 3.1.d) with 
 we have: 

  

(Full points to other coordinates based correct solutions. Non integral based solutions are not 
accepted)

F1 = ∬-
P0 dS

P0
dS = r dθ dr

F1 = P0 ∫
2π

θ=0 ∫
R

r=0
r dr dθ = P0π R2

3.5 

 

 ,  

hence  , which means that the contact forces balance out the weight and the 
object is in equilibrium  
(or any equivalently intelligent formulation) 

(No points for conclusion without calculations)

⃗P = − Mg ⃗e z = 2
3 πμgR3 ⃗e z

⃗F 1 + ⃗F 2 = − F1 ⃗e z − F2 ⃗e z = −P0π R2 ⃗e z + P0π R2 ⃗e z + 2
3 πμgR3 ⃗e z

⃗P = ⃗F1 + ⃗F2

3.4 

, 

using the spherical coordinates determined in 3.1.c) with  and 
 we have: 

 

 

 

(Full points to other coordinates based correct solutions. Non integral based solutions are not 
accepted)

F2 = ∬Σ
[P0 − μgz] cos θ dS

dS = R2 sin θ dθ dφ
z = R cos θ

F2 = ∫
2π

φ=0 ∫
π

θ=π/2
[P0 − μgz] cos θ R2 sin θ dθ dφ

= R2 ∫
2π

φ=0 ∫
π

θ=π/2
[P0 cos θ sin θ − μgR cos2 θ sin θ] dθ dφ

= 2π R2 [ 1
2 P0 sin2 θ + 1

3 μgR cos3 θ]
π

π/2
= − P0π R2 − 2

3 πμgR3



Total: 1pt 

0,25 

0,25 

0,25 

0,25

3.6 

Since the shape is spherical, the contact force  is, in reality, perpendicular to the surface, 
hence  , in spherical coordinates and spherical local frame  

Due to the symmetry of rotation around the axis  we can express  in cylindrical 
coordinates and cylindrical local frame: 

 , with   due to the change in coordinate system from 
spherical to cylindrical 

When we take the sum of all  contributions around the spherical surface  we get the sum 
of the components on the radial direction  and on the vertical direction . Since 
question 3.5 specifies that the  calculated in 3.4 is on , then we have already 
calculated  in 3.4, and . 

But we notice that for any depth , every  contribution there’s an opposite  
contribution of the same amount due to the symmetry of rotation around the axis . 
Hence,  , which justifies that  from question 3.4. 

⃗F 2⃗F 2 = − F2r ⃗e r

(Oz ) ⃗F 2

⃗F 2 = − F ′ 
2r ⃗e r − F2z ⃗e z F ′ 

2r ≠ F2r

⃗F 2 Σ
⃗F ′ 
2r ⃗F 2z

F2 − ⃗e z⃗F 2z ⃗F 2z ≠ 0

z ⃗F ′ 
2r(z ) ⃗F ′ 

2r(z )
(Oz )

∑ ⃗F ′ 
2r(z ) = 0 ∀z ⃗F 2 = ∑ ⃗F 2z


