Scan First

MNTES - S1 - End of Semester Written Exam

$20^{\text {th }}$ of January, 2022
Total time: $\mathbf{2 h}$
Calculators, phones and documents are NOT authorized. Indicative grading scale

Exercise 1 (4 points)

Consider the differential form $\omega=\left(x^{2}+y^{2}+2 x\right) d x+2 y d y$ defined on \mathbb{R}^{2}.

1) Show that ω is not closed.
2) Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a function of class C^{1} and $\omega_{1}=\varphi(x) \omega$ be a differential form.
a. Determine a function φ such that ω_{1} is closed, with $\varphi(0)=1$.
b. With the function φ found previously, is it possible to conclude that ω_{1} is exact? Why?
c. Find the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $d f=\omega_{1}$.

Hint : what is the first derivative of $x^{2} e^{x}$ with respect to x ?

Exercise 2 (5 points)

We provide hereafter a ray-diagram, giving the image $A^{\prime} M^{\prime}$ of an object $A M$ through a thin lens of focal length $f^{\prime}=\overline{O F^{\prime}}$:

The conjugate equation gives the relationship between $a^{\prime}=\overline{O A^{\prime}}, a=\overline{O A}$ and $f^{\prime}=\overline{O F^{\prime}}$:

$$
\frac{1}{a^{\prime}}-\frac{1}{a}=\frac{1}{f^{\prime}}
$$

In this expression, a, a^{\prime} can be positive or negative. They can be measured and their uncertainties Δa and Δa^{\prime} can be directly estimated during the experiment.

1) Uncertainties:
a. Give the expression of $f^{\prime}\left(a, a^{\prime}\right)$ for $\left(a, a^{\prime}\right) \in \mathbb{R}^{2}, a \neq a^{\prime}$.
b. Express the differential $d f^{\prime}$.
c. Deduce the absolute uncertainty Δf^{\prime} on f^{\prime}, as a function of Δa and Δa^{\prime}.
d. Numerical application: Students measured $a=(40.0 \pm 2.0) \mathrm{cm}$ and $a^{\prime}=(-40.00 \pm$ $0.40) \mathrm{cm}$. Compute f^{\prime} and Δf^{\prime} and write the result as $f^{\prime}=(\cdots \pm \cdots)$ unit.
2) Small variations: During a second experiment, the students use a thin lens with a focal length $f^{\prime}=+100 \mathrm{~mm}$. The object $A M$ is initially placed at the position $a=-20 \mathrm{~cm}$.
a. Compute the position a^{\prime} of the image $A^{\prime} M^{\prime}$.
b. The students move the object by a quantity δa. Give the expression of the variation δa^{\prime} of the image position.
c. Numerical application: Compute δa^{\prime} for $\delta a=-1 \mathrm{~cm}$.

Exercise 3: movement of a load carried by a crane

The exercise is composed of 3 independent parts.

Part A (3 points)

A load M is rotating at the end of a cable [OM] of length L, attached to the end of a crane boom.
The load will be interpreted as a point M in the direct orthonormal frame ($O, \vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}$), whose axes are shown in Figure 1 (in the Appendix).
M has a circular rotation around the vertical z-axis (dotted line in Figure 1 in the Appendix). The point O is the end of the crane's boom. The undirected angle $\widehat{P O M}$ is equal to $\pi / 4$ radians.

1) On figure 1 in the appendix, represent:

- The spherical coordinates r, θ, φ of point M ,
- \quad The local spherical frame $\left(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\varphi}\right)$ at point M .

2) Give the expression of vector $\overrightarrow{O M}$ using spherical coordinates, first in the Cartesian frame $\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right)$, then in the local frame ($\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\varphi}$).
3) Propose a parametrization of the trajectory of point M using spherical coordinates.

Part B (5 points)

It is now assumed that under the action of friction, the original circular motion is transformed into a motion of oscillations in a plane $\varphi=$ constant in spherical coordinates.

To study this new motion, a new reference frame is chosen and polar coordinates will be used (see Figure $\mathbf{2}$ in the Appendix). θ now denotes the angle of the polar coordinates.
g denotes the gravity of Earth $\left(g \simeq 9.81 \mathrm{~m} . \mathrm{s}^{-2}\right)$ and L is constant.

1) On figure 2 in the appendix, define the local polar frame at point M.
2) Give the expression of $\overrightarrow{e_{r}}$ and $\overrightarrow{e_{\theta}}$ in the Cartesian frame, and deduce the expression of $\dot{\overrightarrow{e_{r}}}=\frac{d \overrightarrow{e_{r}}}{d t}$.
3) a. Give the expression of $\overrightarrow{O M}$ and \vec{v} in the local polar frame.
b. Express the acceleration $\vec{a}=\frac{d \vec{v}}{d t}$ of point M in the local polar frame.
4) Projecting the second Newton's law onto the direction of $\overrightarrow{e_{\theta}}$, it is possible to obtain the differential equation of motion, which can be put into the form:

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin \theta=0
$$

a. Show with differential calculus that if θ is very small, then $\sin (\theta) \simeq \theta$.
b. Give the general solutions of the differential equation (1) below, with unknown function θ of variable t , in the case where θ is considered very small:

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \tag{1}
\end{equation*}
$$

Partie C (3 points)

Because of a failure of the cable, the load M falls. The differential equation verified by the speed $v(t)$ of point M is:

$$
\begin{equation*}
m \frac{d v}{d t}+\lambda v=m g \text { with } \lambda \in \mathbb{R}_{+}^{*} \tag{3}
\end{equation*}
$$

1) Determine the solution $v(t)$ of equation (3), knowing that $v(0)=0$.
2) Complete the dotted lines of the Python code given in appendix and add the necessary elements in order to have a step h of 0.01 and a table " v " which contains the approximate values of the solution of (4), on the interval [a,b], for this value of h.

APPENDIX TO BE RETURNED	LAST NAME : FIST NAME : GROUP :

Figures 1 and 2, to be completed in Part A and Part B, respectively

Python code, to be completed in Part C

```
Import
```

$a=0$
b $=10$
$\mathrm{m}=1$
$m u=1$

```
n = .........
t = np.ones(n) * 0 # initialisation of the array t of size n
v = np.ones(n) * 0 # initialisation of v with the initial
condition
h = (b-a)/n # definition of the step
for k in range(1,n):
    t[k]=t[k-1]+h
    v[k]=v[k-1]+h*
print(v)
```

