$1^{\text {st }}$ MNTES exam - Semester 1
 November $18^{\text {th }}, 2022$. Duration: 1.5 h

No document allowed. No mobile phone, no electronic devices (like apple watch). Non-programmable calculator allowed. The proposed grading scale is only indicative.
It is also reminded that the general clarity and cleanness of your paper may also be taken into account.

Exercise 1 (10 points)

An electromagnetic wave is defined by its electric field \vec{E} and its magnetic field \vec{B}. Let \vec{n} be the unit vector giving the direction along which the electromagnetic wave propagates.
The vectors are such that: $\vec{n} \cdot \vec{E}=0 \quad, \quad \vec{n} \cdot \vec{B}=0 \quad$ and $\quad \vec{B}=\frac{1}{V} \vec{n} \times \vec{E} \quad$ where V is the velocity of the wave along the direction of the unit vector \vec{n}.

1. (a) Schematically represent \vec{E}, \vec{B} and \vec{n} at the same point. You do not need to care about the vector lengths, but you need to explain the directions.
(b) Give the relation between the length of \vec{B} and that of \vec{E}.

In the following, we consider a direct orthonormal basis $\left(O ; \overrightarrow{e_{x}}, \overrightarrow{e_{y}}, \overrightarrow{e_{z}}\right)$. A vector \vec{k}, collinear to vector \vec{n} with the same direction, is defined as $\vec{k}=0.3 \overrightarrow{e_{x}}+0.4 \overrightarrow{e_{y}}$. Moreover, in this basis, $\vec{E}=E_{z} \overrightarrow{e_{z}}$.
2. Give the coordinates of \vec{n}.
3. Deduce the coordinates of \vec{B}.
4. Give the angle between \vec{B} and ($O x$), then the angle between \vec{B} and ($O z$) (up to an angle π).
5. Make a scheme with the vectors \vec{E}, \vec{B} and \vec{n} correctly placed in the basis $\left(O ; \overrightarrow{e_{x}}, \overrightarrow{e_{y}}, \overrightarrow{e_{z}}\right)$.
6. Determine a Cartesian equation of the plane containing the vectors \vec{E} and \vec{B}, and containing the point $A(2,1,0)$.
7. The power P of the wave passing through a surface of area S and of normal vector \vec{u} can be computed using the following expression:

$$
P=S\left(\vec{E} \times \frac{1}{\mu_{0}} \vec{B}\right) \cdot \vec{u} \quad \text { where } \quad \mu_{0} \quad \text { is a constant }
$$

(a) Find a unit vector \vec{u} in the $x y$-plane, for which the power P is nil.
(b) For $\vec{u}=\overrightarrow{e_{x}}$, express P as a function of S, E_{z}, V and μ_{0}.

Exercise 2 (5 points +1 bonus point)

In this exercise, i is the complex number verifying $\mathrm{i}^{2}=-1$.
Let z_{1}, z_{2} and z be three complex numbers such that

$$
z_{1}=\sqrt{2}+\mathrm{i} \sqrt{2} \quad ; \quad z_{2}=-2 \mathrm{i} \quad ; \quad \frac{1}{z}=\frac{1}{z_{1}}+\frac{1}{z_{2}} .
$$

1. Write z_{1} and z_{2} in their exponential forms.
2. Give the Cartesian form of z and highlight its real and its imaginary parts.
3. Deduce the modulus of z (the result should be given as a reduced fraction).
4. Show that $z=\frac{\mathrm{e}^{-\mathrm{i} \frac{\pi}{8}}}{\cos \left(\frac{3 \pi}{8}\right)}$, with sufficient detail in the calculations. (Hint: you may factorize the complex number $\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{i} \varphi}$ by $\mathrm{e}^{\mathrm{i} \frac{\theta+\varphi}{2}}$).
5. (bonus) From the previous questions, deduce the exact value of $\cos \left(\frac{3 \pi}{8}\right)$.

Exercise 3 (5 points +1 bonus point)

Using an orthonormal direct basis $\left(O ; \overrightarrow{e_{x}}, \overrightarrow{e_{y}}, \overrightarrow{e_{z}}\right)$, let $\overrightarrow{O M}(t)=x(t) \overrightarrow{e_{x}}+y(t) \overrightarrow{e_{y}}+z(t) \overrightarrow{e_{z}}$ be the position vector of a point $M(t)$, defined as:

$$
\left\{\begin{aligned}
x(t) & =a \cos (\omega t) \\
y(t) & =a \sin (\omega t) \\
z(t) & =-b t^{2}+c t \\
t & \in[0,2]
\end{aligned}\right.
$$

with $a=2 \mathrm{~m}, \omega=2 \pi \mathrm{rad} . \mathrm{s}^{-1}, b=1 \mathrm{~m} . \mathrm{s}^{-2}$ and $c=2 \mathrm{~m} . \mathrm{s}^{-1}$.

1. Express the cylindrical coordinates of point M as a function of t.
2. Graph the trajectory of M in the plane $(x O y)$, as well as its altitude $z(t)$.
3. Give the Cartesian coordinates of the velocity vector $\vec{v}=\frac{\mathrm{d} \overrightarrow{O M}}{\mathrm{~d} t}$, then compute its value $\|\vec{v}\|$ at time $t=0.5 \mathrm{~s}$.
Knowing that $\overrightarrow{e_{z}}$ is directed upwards, does point M move upwards or downwards? Explain your answer.
4. (bonus) Determine the maximum distance between the origin O of the basis and point $M(t)$ for $t \in[0,2]$.
