

## 1<sup>st</sup> MNTES exam – Semester 1 November 18<sup>th</sup>, 2022. Duration: 1.5 h

No document allowed. No mobile phone, no electronic devices (like apple watch). Non-programmable calculator allowed. The proposed grading scale is only indicative. It is also reminded that the general clarity and cleanness of your paper may also be taken into account.

**Exercise 1** (10 points)

An electromagnetic wave is defined by its electric field  $\vec{E}$  and its magnetic field  $\vec{B}$ . Let  $\vec{n}$  be the unit vector giving the direction along which the electromagnetic wave propagates.

The vectors are such that:  $\vec{n} \cdot \vec{E} = 0$ ,  $\vec{n} \cdot \vec{B} = 0$  and  $\vec{B} = \frac{1}{V}\vec{n} \times \vec{E}$  where V is the velocity of the wave along the direction of the unit vector  $\vec{n}$ .

- 1. (a) Schematically represent  $\vec{E}$ ,  $\vec{B}$  and  $\vec{n}$  at the same point. You do not need to care about the vector lengths, but you need to explain the directions.
  - (b) Give the relation between the length of  $\vec{B}$  and that of  $\vec{E}$ .

In the following, we consider a direct orthonormal basis  $(O; \vec{e_x}, \vec{e_y}, \vec{e_z})$ . A vector  $\vec{k}$ , collinear to vector  $\vec{n}$  with the same direction, is defined as  $\vec{k} = 0.3\vec{e_x} + 0.4\vec{e_y}$ . Moreover, in this basis,  $\vec{E} = E_z\vec{e_z}$ .

- 2. Give the coordinates of  $\vec{n}$ .
- 3. Deduce the coordinates of  $\vec{B}$ .
- 4. Give the angle between  $\vec{B}$  and (Ox), then the angle between  $\vec{B}$  and (Oz) (up to an angle  $\pi$ ).
- 5. Make a scheme with the vectors  $\vec{E}$ ,  $\vec{B}$  and  $\vec{n}$  correctly placed in the basis  $(O; \vec{e_x}, \vec{e_y}, \vec{e_z})$ .
- 6. Determine a Cartesian equation of the plane containing the vectors  $\vec{E}$  and  $\vec{B}$ , and containing the point A(2,1,0).
- 7. The power P of the wave passing through a surface of area S and of normal vector  $\vec{u}$  can be computed using the following expression:

$$P = S\left(\vec{E} \times \frac{1}{\mu_0}\vec{B}\right) \cdot \vec{u} \quad \text{where} \quad \mu_0 \quad \text{is a constant}$$

- (a) Find a unit vector  $\vec{u}$  in the xy-plane, for which the power P is nil.
- (b) For  $\vec{u} = \vec{e_x}$ , express P as a function of S,  $E_z$ , V and  $\mu_0$ .

**Exercise 2** (5 points + 1 bonus point)

In this exercise, i is the complex number verifying  $i^2 = -1$ . Let  $z_1$ ,  $z_2$  and z be three complex numbers such that

$$z_1 = \sqrt{2} + i\sqrt{2}$$
;  $z_2 = -2i$ ;  $\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2}$ .



- 1. Write  $z_1$  and  $z_2$  in their exponential forms.
- 2. Give the Cartesian form of z and highlight its real and its imaginary parts.
- 3. Deduce the modulus of z (the result should be given as a reduced fraction).
- 4. Show that  $z = \frac{e^{-i\frac{\pi}{8}}}{\cos\left(\frac{3\pi}{8}\right)}$ , with sufficient detail in the calculations. (Hint: you may factorize the complex number  $e^{i\theta} + e^{i\varphi}$  by  $e^{i\frac{\theta+\varphi}{2}}$ ).
- 5. (bonus) From the previous questions, deduce the exact value of  $\cos\left(\frac{3\pi}{8}\right)$ .

**Exercise 3** (5 points + 1 bonus point)

Using an orthonormal direct basis  $(O; \vec{e_x}, \vec{e_y}, \vec{e_z})$ , let  $\overrightarrow{OM}(t) = x(t)\vec{e_x} + y(t)\vec{e_y} + z(t)\vec{e_z}$  be the position vector of a point M(t), defined as:

$$\begin{cases} x(t) = a\cos(\omega t) \\ y(t) = a\sin(\omega t) \\ z(t) = -bt^2 + ct \\ t \in [0, 2] \end{cases}$$

with a = 2 m,  $\omega = 2\pi \text{ rad.s}^{-1}$ ,  $b = 1 \text{ m.s}^{-2}$  and  $c = 2 \text{ m.s}^{-1}$ .

- 1. Express the cylindrical coordinates of point M as a function of t.
- 2. Graph the trajectory of M in the plane (xOy), as well as its altitude z(t).
- 3. Give the Cartesian coordinates of the velocity vector  $\vec{v} = \frac{d\vec{OM}}{dt}$ , then compute its value  $\|\vec{v}\|$  at time t = 0.5 s. Knowing that  $\vec{e_z}$  is directed upwards, does point M move upwards or downwards? Explain your answer.
- 4. (bonus) Determine the maximum distance between the origin O of the basis and point M(t) for  $t \in [0, 2]$ .