

Correction of the 2^{nd} MNTES exam – Semester 1 January 19^{th} , 2024

Exercise 1: Differential form (2 points)

1. with $\omega = Pdx + Qdy + Rdz$, we have $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = z^2$ $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 2yz$ $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} = 2xz + 1$ Hence ω is closed	0.75
2. $\omega = df = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$	1 (expression of f
$f(x, y, z) = xyz^2 + yz + z^2 + C$ with $C \in \mathbb{R}$	with constant)
$f(0, 0, 0) = 1 \iff C = 1$	0.25 (value of the
Therefore $f(x, y, z) = xyz^2 + yz + z^2 + 1$	constant)

Exercise 2: Parametrization (2 points)

$\int (x(t) = \cos(t) + 1)$	0.5 (sin(t), cos(t))
$ \int \frac{w(v) - \cos(v) + 1}{v(v) - \cos(v) + 1} $	0.5 (2 in front of
$\int y(t) = 2sin(t) + 2$	sin(t)
$\left[t \in [0, 2\pi) \right]$	0.5 (center)
(accept all other consistent parametric descriptions)	0.5 (range t)

Exercise 3 - Kinematics (6 points)

	·
$\begin{cases} r(t) = 2\\ \theta(t) = 2t \text{as} \dot{\theta} = 2 \text{and} \theta(0) = 0 \end{cases}$	0.5
1. $\begin{cases} b(t) = 2t & \text{as } b = 2 & \text{and } b(0) = 0 \\ r(t) = 4 \cos(4t) \end{cases}$	
$z(t) = 4\cos(4t)$	
$t \in [0;\pi]$	
2. $\overrightarrow{OM} = r\vec{e_r} + z\vec{e_z} = 2\vec{e_r} + 4\cos(4t)\vec{e_z}$	0.5
$\overrightarrow{OM} = rcos\theta\vec{e_x} + rsin\theta\vec{e_y} + z\vec{e_z} = 2cos(2t)\vec{e_x} + 2sin(2t)\vec{e_y} + 4cos(4t)\vec{e_z}$	0.5
3. $\vec{v} = \frac{d\overrightarrow{OM}}{dt} = r\dot{\theta}\vec{e_{\theta}} + \dot{z}\vec{e_z} = 4\vec{e_{\theta}} - 16sin(4t)\vec{e_z}$	0.5
$\vec{v} = -4\sin(2t)\vec{e_x} + 4\cos(2t)\vec{e_y} - 16\sin(4t)\vec{e_z}$	0.5
$v = \vec{v} = 4\sqrt{1 + 16sin^2(4t)}$	0.5
4. \vec{v} is horizontal when $sin(4t) = 0 \iff t = \frac{k\pi}{4}, k \in [0, 4]$	
Corresponding points M_k :	
(cylindrical coordinates) $\overline{OM'_k} = 2\vec{e_r} + 4\cos(k\pi)\vec{e_z} = 2\vec{e_r} + 4.(-1)^k\vec{e_z}$	0.5 (cylindrical)
(Cartesian coordinates) $\overrightarrow{OM_k} = 2\cos(\frac{k\pi}{2})\vec{e_x} + 2\sin(\frac{k\pi}{2})\vec{e_y} + 4\cos(k\pi)\vec{e_z}$	0.5 (Cartesian)
$\int \overline{OM_k} = 2.(-1)^p \vec{e_x} + 4\vec{e_z} \text{ if } k = 2p$	
$\overrightarrow{OM_k} = 2.(-1)^p \vec{e_y} - 4\vec{e_z} \text{ if } k = 2p+1$	
$\int x(t) = 2\cos(2t) = \sqrt{2}$	
5. It is impossible to find t such that $\begin{cases} y(t) = 2\sin(2t) = \sqrt{2} \end{cases}$	0.25
$z(t) = 4\cos(4t) = 4$	0.20
So the point of Cartesian coordinates $(\sqrt{2}; \sqrt{2}; 4)$ does not belong to the curve	
6. Curve b) is the trajectory	0.25
7. Cartesian coordinates of $M(t = \frac{\pi}{4})$: $(x = 0; y = 2; z = -4)$	0.5
spherical coordinates of $M(t = \frac{\pi}{4})$: $(\rho = 2\sqrt{5}; \phi = \frac{\pi}{2} + Arctan(2); \theta = \frac{\pi}{2})$	0.5
8. scheme	0.5

Exercise 4 - Differential equations (6 points)

1. We look for a particular solution $z_n(t) = A \cdot e^{i\omega t}$	
z_p satisfies the equation iff $A = \frac{U_0}{1 + i R C \omega}$	1
Hence $z_p(t) = \frac{U_0}{1+iRC\omega} e^{i\omega t}$	
2. Associated homogeneous equation: $RCz' + z = 0$	
The general solution is $z_h(t) = K e^{rt}$ with r solution of the characteristic	1
equation $RCr + 1 = 0$	1
Hence $r = \frac{-1}{RC}$ and $z_h(t) = K.e^{-\frac{t}{RC}}$	
3. $z = z_p + z_h = \frac{U_0}{1 + iRC\omega} e^{i\omega t} + K e^{-\frac{t}{RC}}$	0.5
4. We look for a particular solution $z_p(t) = A \cdot e^{i\omega t}$	
z_p satisfies the equation iff $A = \frac{U_0}{1 - LC\omega^2}$ (if $\omega \neq \frac{1}{\sqrt{LC}}$)	
Hence $z_p(t) = \frac{U_0}{1 - LC\omega^2} \cdot e^{i\omega t}$ (if $\omega \neq \frac{1}{\sqrt{LC}}$)	1 (case $\omega \neq \frac{1}{\sqrt{LC}}$)
If $\omega = \frac{1}{\sqrt{LC}}$, we look for a particular solution $z_p(t) = At.e^{i\omega t}$	1 (case $\omega = \frac{\sqrt{LC}}{\sqrt{LC}}$)
In this case, z_p satisfies the equation iff $A = \frac{U_0}{2i\omega}$	
and $z_p = \frac{U_0}{2i\omega} t \cdot e^{i\omega t}$	
5. Associated homogeneous equation: $LCz'' + z = 0$	
The characteristic equation is $LCr^2 + 1 = 0$	1
Hence $r = \frac{\pm i}{\sqrt{LC}}$ and $z_h(t) = A.e^{\frac{it}{\sqrt{LC}}} + Be^{\frac{-it}{\sqrt{LC}}}$	
$\int z = \frac{U_0}{1 - LC\omega^2} \cdot e^{i\omega t} + A \cdot e^{\frac{it}{\sqrt{LC}}} + B e^{\frac{-it}{\sqrt{LC}}} \text{if} \omega \neq \frac{1}{\sqrt{LC}}$	0.5
$z = \frac{U_0}{2i\omega} \cdot t \cdot e^{i\omega t} + A \cdot e^{\frac{it}{\sqrt{LC}}} + B e^{\frac{-it}{\sqrt{LC}}} \text{if} \omega = \frac{1}{\sqrt{LC}}$	

Exercise 5 - Analysis of a Lissajous curve (4 points + 1 bonus point)

1. if $t \in [0; \frac{\pi}{2}], x = sin(2t) \in [0; 1]$	0.5 (scheme with scale)
2. $t = 0$: the point is (0;0)	0.5
$t = \frac{\pi}{2}$: the point is $(0; -1)$	0.0
3. $\vec{T}(t) = x'(t)\vec{e_x} + y'(t)\vec{e_y} = 2\cos(2t)\vec{e_x} + 3\cos(3t)\vec{e_y}$	$1 (\vec{T})$
\vec{T} is horizontal when $cos(3t) = 0$, <i>i.e.</i> $t = \frac{\pi}{6}$ or $t = \frac{\pi}{2}$	2 (scheme com-
At that point $\vec{T} = 2\cos(\frac{\pi}{3})\vec{e_x} = \vec{e_x}$	pleted with vec-
\vec{T} is vertical when $cos(2t) = 0$, <i>i.e.</i> $t = \frac{\pi}{4}$	tors of correct ori-
At that point, $\vec{T} = 3\cos(\frac{3\pi}{4})\vec{e_y} = \frac{-3\sqrt{2}}{2}\vec{e_y}^4$	entation)
4. $x(-t) = -x(t)$ and $y(-t) = -y(t) \Longrightarrow$ The portion of curve obtained for	
$t \in [-\pi; 0]$ is the symmetrical with respect to the x-axis of the portion of the	
curve obtained for $t \in [0; \pi]$.	
Moreover, for $t \in [0; \pi]$, $x(\pi - t) = -x(t)$ and $y(\pi - t) = y(t) \Longrightarrow$ The portion	
of curve obtained for $t \in \left\lfloor \frac{\pi}{2}; \pi \right\rfloor$ is the symmetrical with respect to the y-axis	
of the portion of the curve obtained for $t \in [0; \frac{\pi}{2}]$.	
1.00 0.75 0.50 0.25	Bonus +1
⊕ 0.00 −0.25 −0.50 −0.75 −0.75	
-1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 x(t)	