Correction of the $2^{\text {nd }}$ MNTES exam - Semester 1
 January $19^{\text {th }}, 2024$

Exercise 1: Differential form (2 points)

1. with $\omega=P d x+Q d y+R d z$, we have	
$\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=z^{2}$	0.75
$\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}=2 y z$	
$\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}=2 x z+1$	
Hence ω is closed	(expression of f with constant) $2 . \omega=d f=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}$ $f(x, y, z)=x y z^{2}+y z+z^{2}+C \quad$ with $\quad C \in \mathbb{R}$ $f(0,0,0)=1 \quad \Longleftrightarrow C=1$ Therefore $f(x, y, z)=x y z^{2}+y z+z^{2}+1$

Exercise 2: Parametrization (2 points)

$\left\{\begin{array}{l\|l}x(t)=\cos (t)+1 & 0.5(\sin (t), \cos (t)) \\ y(t)=2 \sin (t)+2 & 0.5(2 \text { in front of } \\ t \in[0,2 \pi)] & \sin (t)) \\ \text { (accept all other consistent parametric descriptions) } & 0.5(\text { center }) \\ \hline\end{array}\right.$	0.5 (range $t)$

Exercise 3 - Kinematics (6 points)

1. $\left\{\begin{array}{l}r(t)=2 \\ \theta(t)=2 t \quad \text { as } \quad \dot{\theta}=2 \quad \text { and } \quad \theta(0)=0 \\ z(t)=4 \cos (4 t) \\ t \in[0 ; \pi]\end{array}\right.$	0.5		
$\begin{aligned} & \text { 2. } \overrightarrow{O M}=r \overrightarrow{e_{r}}+z \overrightarrow{e_{z}}=2 \overrightarrow{e_{r}}+4 \cos (4 t) \overrightarrow{e_{z}} \\ & \overrightarrow{O M}=r \cos \theta \overrightarrow{e_{x}}+r \sin \theta \overrightarrow{e_{y}}+z \overrightarrow{e_{z}}=2 \cos (2 t) \overrightarrow{e_{x}}+2 \sin (2 t) \overrightarrow{e_{y}}+4 \cos (4 t) \overrightarrow{e_{z}} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		
$\begin{aligned} & \text { 3. } \vec{v}=\frac{d \overrightarrow{O M}}{d t}=r \dot{\theta} \overrightarrow{\theta_{\theta}}+\dot{z} \overrightarrow{e_{z}}=4 \overrightarrow{e_{\theta}}-16 \sin (4 t) \overrightarrow{e_{z}} \\ & \vec{v}=-4 \sin (2 t) \overrightarrow{e_{x}}+4 \cos (2 t) \overrightarrow{e_{y}}-16 \sin (4 t) \overrightarrow{e_{z}} \\ & v=\\|\vec{v}\\|=4 \sqrt{1+16 \sin ^{2}(4 t)} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		
4. \vec{v} is horizontal when $\sin (4 t)=0 \quad \Longleftrightarrow \quad t=\frac{k \pi}{4}, k \in \llbracket 0,4 \rrbracket$ Corresponding points M_{k} : (cylindrical coordinates) $\overrightarrow{O M_{k}}=2 \overrightarrow{e_{r}}+4 \cos (k \pi) \overrightarrow{e_{z}}=2 \overrightarrow{e_{r}}+4 \cdot(-1)^{k} \overrightarrow{e_{z}}$ (Cartesian coordinates) $\overrightarrow{O M_{k}}=2 \cos \left(\frac{k \pi}{2}\right) \overrightarrow{e_{x}}+2 \sin \left(\frac{k \pi}{2}\right) \overrightarrow{e_{y}}+4 \cos (k \pi) \overrightarrow{e_{z}}$ $\Longrightarrow\left\{\begin{array}{l} \overrightarrow{O M_{k}}=2 \cdot(-1)^{p} \overrightarrow{e_{x}}+4 \overrightarrow{e_{z}} \text { if } k=2 p \\ \overrightarrow{O M_{k}}=2 \cdot(-1)^{p} \overrightarrow{e_{y}}-4 \overrightarrow{e_{z}} \text { if } k=2 p+1 \end{array}\right.$	0.5 (cylindrical) 0.5 (Cartesian)		
5. It is impossible to find t such that $\left\{\begin{array}{l}x(t)=2 \cos (2 t)=\sqrt{2} \\ y(t)=2 \sin (2 t)=\sqrt{2} \\ z(t)=4 \cos (4 t)=4\end{array}\right.$ So the point of Cartesian coordinates $(\sqrt{2} ; \sqrt{2} ; 4)$ does not belong to the curve	0.25		
6. Curve b) is the trajectory	0.25		
7. Cartesian coordinates of $M\left(t=\frac{\pi}{4}\right):(x=0 ; y=2 ; z=-4)$ spherical coordinates of $M\left(t=\frac{\pi}{4}\right):\left(\rho=2 \sqrt{5} ; \phi=\frac{\pi}{2}+\operatorname{Arctan}(2) ; \theta=\frac{\pi}{2}\right)$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$		
8. scheme	0.5		

Exercise 4 - Differential equations (6 points)

1. We look for a particular solution $z_{p}(t)=A . e^{i \omega t}$ z_{p} satisfies the equation iff $A=\frac{U_{0}}{1+i R C \omega}$ Hence $z_{p}(t)=\frac{U_{0}}{1+i R C \omega} \cdot e^{i \omega t}$	1
2. Associated homogeneous equation: $R C z^{\prime}+z=0$ The general solution is $z_{h}(t)=K . e^{r t}$ with r solution of the characteristic equation $R C r+1=0$ Hence $r=\frac{-1}{R C}$ and $z_{h}(t)=K \cdot e^{-\frac{t}{R C}}$	1
3. $z=z_{p}+z_{h}=\frac{U_{0}}{1+i R C \omega} \cdot e^{i \omega t}+K \cdot e^{-\frac{t}{R C}}$	0.5
4. We look for a particular solution $z_{p}(t)=A . e^{i \omega t}$ z_{p} satisfies the equation iff $A=\frac{U_{0}}{1-L C \omega^{2}}$ (if $\omega \neq \frac{1}{\sqrt{L C}}$) Hence $z_{p}(t)=\frac{U_{0}}{1-L C \omega^{2}} . e^{i \omega t}\left(\right.$ if $\omega \neq \frac{1}{\sqrt{L C}}$) If $\omega=\frac{1}{\sqrt{L C}}$, we look for a particular solution $z_{p}(t)=A t . e^{i \omega t}$ In this case, z_{p} satisfies the equation iff $A=\frac{U_{0}}{2 i \omega}$ and $z_{p}=\frac{U_{0}}{2 i \omega}$.t. $e^{i \omega t}$	$\begin{aligned} & 1\left(\text { case } \omega \neq \frac{1}{\sqrt{L C}}\right) \\ & 1\left(\text { case } \omega=\frac{1}{\sqrt{L C}}\right) \end{aligned}$
5. Associated homogeneous equation: $L C z^{\prime \prime}+z=0$ The characteristic equation is $L C r^{2}+1=0$ Hence $r=\frac{ \pm i}{\sqrt{L C}}$ and $z_{h}(t)=A \cdot e^{\frac{i t}{\sqrt{L C}}}+B e^{\frac{-i t}{\sqrt{L C}}}$	1
6. $\left\{\begin{array}{l}z=\frac{U_{0}}{1-L C \omega^{2}} \cdot e^{i \omega t}+A \cdot e^{\frac{i t}{\sqrt{L C}}}+B e^{\frac{-i t}{\sqrt{L C}}} \quad \text { if } \quad \omega \neq \frac{1}{\sqrt{L C}} \\ z=\frac{U_{0}}{2 i \omega} \cdot t \cdot e^{i \omega t}+A \cdot e^{\frac{i t}{\sqrt{L C}}}+B e^{\frac{-i t}{\sqrt{L C}}} \quad \text { if } \quad \omega=\frac{1}{\sqrt{L C}}\end{array}\right.$	0.5

Exercise 5 - Analysis of a Lissajous curve (4 points +1 bonus point)
$\left.\begin{array}{|l|l|}\hline \text { 1. if } t \in\left[0 ; \frac{\pi}{2}\right], x=\sin (2 t) \in[0 ; 1] & \begin{array}{l}0.5 \text { (scheme with } \\ \text { scale) }\end{array} \\ \hline \text { 2. } t=0: \text { the point is }(0 ; 0) & 0.5 \\ t=\frac{\pi}{2}: \text { the point is }(0 ;-1)\end{array} \quad \begin{array}{l}1(\vec{T}) \\ 2 \quad \text { (scheme com- } \\ \text { pleted with vec } \\ \text { tors of correct ori- } \\ \text { entation) }\end{array}\right]$

