

Correction of the 1st MONTY exam – Semester 1 November 22th, 2024

Exercise 1: Quadratic equations (3 points)

1. $z^2 = 1 + i = \sqrt{2}e^{i\pi/4}$	0.5
$z = \pm 2^{1/4} e^{i\pi}/8$	0.5
The solutions are $S = \{2^{1/4}e^{i\pi}/8; 2^{1/4}e^{i9\pi}/8\}$	0.5
$2. \ \Delta = 3 + 4i$	
Let's find $a, b \in \mathbb{R}$ so that $\delta = a + ib$ and $\delta^2 = \Delta$:	
$a^{2} - b^{2} = 3$ $a = 2$ and $b = 1$	0.5
$\left \begin{array}{c} 2ab = 4 \\ \Rightarrow \end{array} \right \Leftrightarrow \left\langle \text{or} \right\rangle$	
$a^{2} + b^{2} = 5$ $a = -2$ and $b = -1$	
We choose $\delta = 2 + i$	0.5
The solutions are $S = \{\frac{-\sqrt{3}}{2} + 1 + \frac{1}{2}i; -\frac{\sqrt{3}}{2} - 1 - \frac{1}{2}i\}$	0.5

Exercise 2: Powers of a complex number (3 points)

Exercise 3 - Vectors (6 points)

$D \qquad O \qquad B \qquad y \qquad A$	0.5
1. x*	
2. $\vec{u} = \frac{\vec{AB} \times \vec{AC}}{\ \vec{AB} \times \vec{AC}\ }$	0.25
$\overrightarrow{AB} \times \overrightarrow{AC} = (2; 2; 1)$	0.25
$\ \overrightarrow{AB} \times \overrightarrow{AC} \ = 3$	0.25
So $\vec{u} = (\frac{2}{3}; \frac{2}{3}; \frac{1}{3})$	0.25
3. \overrightarrow{AH} is the orthogonal projection of \overrightarrow{AD} onto the line directed by \vec{u}	0.5
So $\overrightarrow{AH} = (\overrightarrow{AD} \cdot \vec{u})\vec{u} = (\frac{4}{9} ; \frac{4}{9} ; \frac{2}{9})$	0.25
4. $\overrightarrow{AO} \cdot \vec{u} = -\frac{4}{3} < 0$ so $\cos(\overrightarrow{AO}, \vec{u}) < 0$	0.25
$\overrightarrow{AD} \cdot \vec{u} = \frac{2}{3} > 0$ so $cos(\overrightarrow{AD}, \vec{u}) > 0$	0.25
Hence O and D are not on the same side of the plane (ABC)	0.25
5. Let θ be the angle $(\overrightarrow{AD}, \vec{u})$.	0.5
$\cos(\theta) = \frac{AD^{\prime}u}{\ \overline{AD}\ \ \overline{u}\ } = \frac{2}{3\sqrt{6}}$	05
Hence $\theta = \cos^{-1}\left(\frac{1}{3\sqrt{6}}\right)$	0.5
6. M is the center of mass of (A, a) and (B, b) iff $(a+b)OM = aOA+bOB$	0.5
$\left \begin{array}{c} 2(\mathrm{a+b}) = \mathrm{a} \\ 0 & \mathrm{a+b} \end{array} \right \stackrel{\mathrm{2}}{\longleftrightarrow} \mathrm{a} + 2\mathrm{b} = 0$	
$\int 0 = a + 2b$	0.5
(A,a) and (B b)	
7. Different possibilities accepted here, among which:	
G is the center of mass of $(I,2)$ and $(J,2)$ with I the middle of AB and J	
the middle of CD. Hence G is the middle of IJ.	0.5
Or: G is the center of mass of $(I,3)$ and $(D,1)$ with I at the intersection	0.0
of the medians of the triangle (ABC). Hence G is on the line ID with $IC = {}^{1}ID$	
$IG = \frac{1}{4}ID$	
Graph	0.5

Exercise 4 - Differential calculus (4 points)

1. $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$	0.25
$\frac{\partial f}{\partial x}(x,y,z) = -\sin(x+y^2)e^{-z}$	0.25
$\frac{\partial f}{\partial y}(x,y,z) = -2ysin(x+y^2)e^{-z}$	0.25
$\frac{\partial f}{\partial z}(x,y,z) = -\cos(x+y^2)e^{-z}$	0.25
so $df = -\sin(x+y^2)e^{-z}dx - 2y\sin(x+y^2)e^{-z}dy - \cos(x+y^2)e^{-z}dz$	0.25
$2. \ \omega = Pdx + Qdy$	0.5
To be closed, we need to have $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$	0.0
Here $\frac{\partial P}{\partial y} = e^x = \frac{\partial Q}{\partial x}$ so ω is closed	0.5
ω is closed on \mathbb{R}^3 so it is exact, therefore f exists.	0.5
Starting from $\frac{\partial f}{\partial x}(x,y) = e^x(y+5)$, we obtain $f(x,y) = e^x(y+5) + g(y)$	0.25 ± 0.25
Hence $\frac{\partial f}{\partial y}(x,y) = e^x + \frac{dg}{dy}(y) = e^x + 3e^y$	0.25
This gives $g(y) = 3e^y + C$ and $f(x, y, z) = e^x(y+5) + 3e^y + C$	0.25 ± 0.25

Exercise 5 - Uncertainties and variations (4 points)

1. $C = \frac{2\pi\varepsilon h}{ln(1+\frac{e}{e})} \approx \frac{S\varepsilon}{e}$	0.5
since $ln(1 + \frac{e}{R_1}) \approx \frac{e}{R_1}$ and $S = 2\pi R_1 h$	0.5
2. $\delta C = \frac{\partial C}{\partial R_1} \delta \hat{R}_1 + \frac{\partial \hat{C}}{\partial R_2} \delta R_2 + \frac{\partial C}{\partial h} \delta h$	0.5
$\frac{\partial C}{\partial R_1} = \frac{2\pi \hat{\epsilon} h}{R_1 ln^2(\frac{R_2}{R_2})}$	0.5
$\frac{\partial C}{\partial R_2} = -\frac{2\pi\varepsilon h}{R_2 ln^2(\frac{R_2}{R_1})}$	0.5
$\frac{\partial C}{\partial h} = \frac{2\pi\varepsilon}{\ln(\frac{R_2}{R_1})}$	0.25
Hence $\delta C = \frac{2\pi\varepsilon h}{R_1 ln^2(\frac{R_2}{R_1})} \delta R_1 - \frac{2\pi\varepsilon h}{R_2 ln^2(\frac{R_2}{R_1})} \delta R_2 + \frac{2\pi\varepsilon}{ln(\frac{R_2}{R_1})} \delta h$	0.25
3. $\Delta C = \left \frac{\partial C}{\partial R_1}\right \Delta R_1 + \left \frac{\partial C}{\partial R_2}\right \Delta R_2 + \left \frac{\partial C}{\partial h}\right \Delta h$	0.5
$\Delta C = \frac{2\pi\varepsilon\hbar}{R_1 ln^2(\frac{R_2}{R_1})}\frac{a}{2} + \frac{2\pi\varepsilon\hbar}{R_2 ln^2(\frac{R_2}{R_1})}\frac{a}{2} + \frac{2\pi\varepsilon}{ln(\frac{R_2}{R_1})}a$	0.5