

Département du Premier Cycle - SCAN - First

IE 2 MTES - Duration 1h30

Warnings and advices

- Documents, dictionaries, phones, and calculators are FORBIDDEN.
- The marking scheme is only given as an indication.

EXERCISE 1 (5 pts)

In this exercice, No justifications are required ! except at questions 4aa) and 4aa).

- 1. Sketch the graph of the function $r \mapsto 9 r^2$ on [0, 3].
- 2. Sketch the graph of the function : $f(x, y) = 9 (x^2 + y^2)$ on an appropriate domain.
- 3. Let $(O, \vec{i}, \vec{j}, \vec{k})$ be an orthonormal frame of \mathbb{R}^3 . Let r, θ and z be the cylindrical coordinates.
 - (a) Recall the expression of the cartesian coordinates x, y, z with respect to the cylindrical coordinates r, θ, z .
 - (b) Recall the expression of the vectors $\vec{e_r}$, $\vec{e_{\theta}}$ and $\vec{e_z}$ of the local cylindrical frame with respect to \vec{i} , \vec{j} and \vec{k} .
- 4. Consider the following parametric curve in cylindrical coordinates :

$$\begin{cases} r(t) = t \\ \theta(t) = \pi t \\ z(t) = 9 - t^2 \end{cases} t \in [0, 3]$$

It represents the trajectory of a point M(t).

- (a) Show that this parametric curve is on the graph of f.
- (b) Give a representation of the trajectory of M(t). Place the points for t = 0, t = 1, t = 2 and t = 3.
- (c) Express the vector $\overrightarrow{OM}(t)$ in the cylindrical frame.
- (d) Compute the velocity $\vec{v}(t) = \overrightarrow{OM}'(t)$ in the cylindrical frame.

EXERCISE 2 (5 pts)

 ~ 1 . Show that the differential form $\omega = dx - \frac{2y(x+z)}{1+y^2} dy + dz$ on \mathbb{R}^3 is not a closed form.

2. Consider now the differential form $\omega_1 = \varphi(y)\omega$:

$$\omega_1 = \varphi(y) \, \mathrm{d}x - \varphi(y) \frac{2y(x+z)}{1+y^2} \, \mathrm{d}y + \varphi(y) \, \mathrm{d}z$$

where φ is a function defined on \mathbb{R} .

Show that ω_1 is a closed form on \mathbb{R}^3 iff $\forall y \in \mathbb{R}, \varphi'(y) = -\frac{2y}{1+y^2}\varphi(y)$.

- 3. Deduce from the previous question that $\omega_1 = \frac{1}{1+y^2} dx \frac{2y(x+z)}{(1+y^2)^2} dy + \frac{1}{1+y^2} dz$ is an exact form on \mathbb{R}^3 .
- 4. Find a function f defined on \mathbb{R}^3 such that $df = \omega_1$.

EXERCISE 3 (1.5 pts)

Give the expression of the cartesian coordinates x, y, z with respect to the spherical coordinates r, θ, φ . (No justification required)

EXERCISE 4 (3.5 pts)

Consider a quantity l express in spherical coordinates by : $l = r \cos(\theta) \sin(\varphi)$. So l can be seen as a function of the three variables r, θ, φ .

- 1. Express the variation δl of l with respect to the variations δr , $\delta \theta$ and $\delta \varphi$ of r, θ, φ .
- 2. Compute δl at the point of spherical coordinates $(1, \frac{\pi}{4}, \frac{\pi}{2})$ when $\delta r = 10^{-2}$, $\delta \theta = \pi 10^{-2}$ and $\delta \varphi = \pi 10^{-2}$.
- 3. Now a point of the space is given by its spherical coordinates with uncertainties $\Delta r, \Delta \theta, \Delta \varphi$.
 - (a) Express the uncertainty Δl .
 - (b) Compute Δl when $r = 1, \theta = \frac{\pi}{2}, \varphi = -\frac{\pi}{4}$ and $\Delta r = 10^{-2}$ and $\Delta \theta = \Delta \varphi = 10^{-2}$

EXERCISE 5 (5 pts)

On the next page are the graphs of two functions f and g.

The function f is defined on \mathbb{R}^2 and the function g is defined on $\mathbb{R}^2 \setminus \{(0,0)\}$.

The graph of f is given for $(x, y) \in [-2, 2] \times [-1, 1]$.

The graph of g is given for $(x, y) \in [-e, e] \times [-e, e]$ and $\lim_{(0,0)} g(x, y) = -\infty$

In this exercice, you don't need to justify your answer except when it is specified to do so!

- 1. (a) Suppose that f is differentiable at (-2,0), what is the sign of $\frac{\partial f}{\partial y}(-2,0)$? What is the value of $\frac{\partial f}{\partial x}(0,-1)$?
 - (b) Give an approximate value of f at (0,0) (-2,-1), (-2,1) and (2,-1). Propose a simple expression for the function f that matches these values.
 - (c) Draw the graph of the partial map of f with respect to x at the point (0, -1).
 - (d) Draw the graph of the partial map of f with respect to y at the point (-2, 0).
- 2. (a) Draw the graph of the partial map of g at the point (0, 1) with respect to y (y > 0).
 - (b) Give an approximate value for g(e, 0) and g(e, e).
 - (c) Considering that $\ln(2) = \ln(e+2-e)$, show that a first order approximation of $\ln(2)$ is $\frac{2}{e}$. Maple gives $\frac{2}{2.7} \approx 0.740$. Deduce an approximation value of $\ln(\sqrt{2}e)$.
 - (d) Propose a simple expression for the function g coherent with your previous answers.

