INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON PÔLE DE MATHÉMATIQUES

FIMI - SCAN1

TEST 2- MTES - 07/06/2019

Warnings and advices

- Documents, dictionaries, phones, and calculators are FORBIDDEN.
- The marking scheme is only given as an indication.

EXERCISE 1 (7 pts)

In \mathbb{R}^2 , consider the points A(-1,0), B(1,0) and C(0,1).

We denote by \mathcal{P} the piece of parabola of equation $y = x^2 - 1$ between the points A and B.

Finally, we denote Γ the path ABCA along \mathcal{P} and the segments [BC] and [CA].

- 1. Represent Γ .
- 2. We consider the field $\overrightarrow{F_1}(x,y) = y^2 \overrightarrow{e_x} + y \overrightarrow{e_y}$ defined on \mathbb{R}^2 .
 - (a) On a field map, represent the vector field at the 2 points (0,1) and (0,-1).
 - (b) Show that $\overrightarrow{F_1}$ is not derived from a potential.
 - (c) Compute the circulation of $\overrightarrow{F_1}$ along Γ .
 - (d) Determine the equations of the field lines and represent the field line going through the point (0, 1) on the field map of question 2a).
- 3. (a) Find a function $\alpha : \mathbb{R} \to \mathbb{R}$ depending only on the variable x such that : - $\alpha(0) = 0$.

- the vector field $\overrightarrow{F_2}(x,y) = y^2 \overrightarrow{e_x} + y\alpha(x)\overrightarrow{e_y}$ is derived from a potential on \mathbb{R}^2 .

- (b) Find the potential P(x, y) from which $\overrightarrow{F_2}$ is derived such that P(0, 0) = 0.
- (c) We consider the oriented half circle Γ' centered at O and going from the point (-1, -1) to the point (1, 1). Compute the circulation of $\overrightarrow{F_2}$ on Γ' .
- 4. We denote by S the flat surface inside Γ .
 - (a) Give the normal vector to S induced by the orientation of Γ .
 - (b) Compute the flux of the field $\overrightarrow{F_3}(x, y, z) = x^2 \overrightarrow{e_z}$ through S.

EXERCISE 2 (6 pts)

In \mathbb{R}^3 with the usual orthonormal frame $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, we consider the vector field \overrightarrow{F} defined on \mathbb{R}^3 minus the Oz axis and given in spherical coordinates by $\overrightarrow{F}(r, \theta, \varphi) = \overrightarrow{e_r} + \pi r \sin(\theta) \overrightarrow{e_{\varphi}}$.

- 1. (a) Give the expression of the infinitesimal displacement \overrightarrow{dOM} in spherical coordinates.
 - (b) We are looking for the field lines as parametric curves in spherial coordinates : $(r(t), \theta(t), \varphi(t))$. Find the equations of the field lines and describe their trajectories in \mathbb{R}^3 .
- 2. (a) Compute the infinitesimal circulation $\overrightarrow{F} \cdot \overrightarrow{dOM}$.
 - (b) Show that the circulation of \overrightarrow{F} on the circle of radius 1, centered at the origin and in the horizontal plane z = 0 is equal to $2\pi^2$.
 - (c) Is the field derived from a potential? If yes, give one possible potential.
- 3. We consider the surface S, defined in cartesian coordinates by

$$S = \{ (x, y, z) \in \mathbb{R}^3 \, | \, x^2 + y^2 + z^2 = 1 \quad \text{and} \quad -1 \leqslant z\sqrt{2} \leqslant 1 \}$$

- (a) Give a description of S in spherical coordinates.
- (b) Compute the flux of the field \overrightarrow{F} through the surface S.

EXERCISE 3 (7 pts + 1 pt BONUS)

We consider a surface of revolution R_S defined in cylindrical coordinates by the equations

$$r^2 - z^2 = 9$$
 and $z \in [0, 4]$

The surface R_S is naturally outwardly oriented.

- 1. Sketch the representation of a cut of the surface in the plane y = 0.
- 2. **BONUS** : Show that on R_S , $\overrightarrow{dS} = \left(\sqrt{9 + z^2} \overrightarrow{e_r} z \overrightarrow{e_z}\right) d\theta dz$.
- 3. (a) Compute the flux of the vector field $\overrightarrow{F_1} = z \overrightarrow{e_z}$ through the surface R_S .
 - (b) The surface R_S is closed by 2 horizontal disks : the disk D_0 for z = 0 and the disk D_4 for z = 4 to obtain a surface H. Compute the total flux of $\overrightarrow{F_1}$ going out of H.
 - (c) Compute the volume inside H and check that the result is exactly the flux of the previous question.
- 4. Compute the flux of the vector field $\overrightarrow{F_2} = \frac{1}{\sqrt{9+z^2}} \overrightarrow{e_x}$ through the surface R_S .