

SCAN-1 MTES - Semester 1

2019-2020

Тезт 1 - 15/11/2019 - 1н

Documents, dictionaries, phones, and calculators are FORBIDDEN.

EXERCISE 1 (4 pts) Solve in \mathbb{C} the equation : $z^2 - (4-3i)z + 1 - 7i = 0$.

EXERCISE 2 (4 pts) Let $\theta \in (\frac{\pi}{2}, \frac{3\pi}{2})$. Consider the complex number $Z = i + tan(\theta)$. Give the modulus of z and an argument of z.

EXERCISE 3 (3 pts) Let A, B, M three points of \mathbb{R}^2 . And let I be the middle of [AB].

- 1. Show that $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 \frac{AB^2}{4}$
- 2. Let $k \in \mathbb{R}$. Regarding the value of k, describe the geometrical set of points of \mathbb{R}^2 satisfying the equation $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$.

EXERCISE 4 (2 pts)

Consider the points A(1,1), B(1,-3) and C(1,2) in \mathbb{R}^2 . After having justified its existence, compute the coordinates of the barycenter G of the weighted points (A,-2), (B,3) and (C,1).

EXERCISE 5 (7 pts)

Let $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ be 3 vectors of \mathbb{R}^3 . And let $\overrightarrow{s} = \overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w})$.

- 1. In this question only, we take $\vec{u} = (1, 1, 1)$, $\vec{v} = (0, 1, 0)$ and $\vec{w} = (0, 0, 1)$. Compute (a) $((\vec{u}, \vec{v}, \vec{w}))$.
 - (b) The projection of \vec{v} on the straight line D directed by \vec{u} .
 - (c) \overrightarrow{s} .
- 2. Compute \overrightarrow{s} if \overrightarrow{v} and \overrightarrow{w} are collinear.
- 3. Compute \overrightarrow{s} if \overrightarrow{u} is orthogonal to both \overrightarrow{v} and \overrightarrow{w} .

In the rest of the exercise, we assume that \overrightarrow{v} and \overrightarrow{w} are not collinear.

- 4. Justify that \overrightarrow{s} is in the plane generated by \overrightarrow{v} and \overrightarrow{w} .
- 5. The previous result implies that there exists $\alpha, \beta \in \mathbb{R}$ such that : $\vec{s} = \alpha \vec{v} + \beta \vec{w}$.
 - (a) Show that $0 = \alpha(\vec{v} \cdot \vec{u}) + \beta(\vec{w} \cdot \vec{u})$.
 - (b) Show that $\overrightarrow{s} \cdot \overrightarrow{v} = ((\overrightarrow{v} \land \overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u})).$
 - (c) Deduce from it that $\alpha \|\vec{v}\|^2 + \beta(\vec{v} \cdot \vec{w}) = (\vec{v} \wedge \vec{w}) \cdot (\vec{v} \wedge \vec{u}).$