

MTES – Correction of the exam #1

Exercise 1 (4 points)

$1 - i\sqrt{3} = 2e^{-i\pi/3}$	0.5 modulus + 0.5 arg
$1 - i = \sqrt{2}e^{-i\pi/4}$ (1 - i\sqrt{3}) ⁵ - 27/2 e^{-i11\pi/12}	0.5 modulus + 0.5 arg
$\frac{1}{(1-i)^3} = 2^{-i} \cdot e^{-i} \cdot e^{-i}$	0.5 modulus + 0.5 arg
$\left(\frac{(1-i\sqrt{3})^5}{(1-i)^3}\right)^n$ is positive real iif its argument is a multiple of 2π	0.5
i.e. <i>n</i> is a multiple of 24/11	0.5

Exercise 2 (5.5 points)

1	The equation is $z^2 + z + (1 - i) = 0$	0.25
	$\Delta = -3 + 4i$	0.5
	$\Delta = \delta^2 \text{ with } \delta = a + ib \text{ gives} \begin{cases} a^2 - b^2 = -3\\ 2ab = 4\\ a^2 + b^2 = 5 \end{cases}$	3*0.25
	We keep $0 = 1 + 2i$ Honso $a = 1$ i and $a = i$	0.5
	$reflece z_1 = -1 - i and z_2 - i$	2*0.5
2	$z_1 = z_2$ if $\Delta = 0$	0.5
	We get $\omega = 2$	0.5
3	M, M ₁ , M ₂ are aligned iff $\left(\overrightarrow{M_1M_2}, \overrightarrow{M_1M}\right) = Arg\left(\frac{\omega - z_1}{z_2 - z_1}\right) = 0$	0.5
	it means $\frac{\omega - z_1}{z_2 - z_1}$ is a real	0.5
	therefore $\frac{\omega - z_1}{z_2 - z_1} = \frac{\overline{\omega} - \overline{z_1}}{\overline{z_2} - \overline{z_1}}$	0.5

Exercise 3 (4.5 points)

1	\overrightarrow{AB} (0, -3, 0); \overrightarrow{AC} (-1, -1, 1); \overrightarrow{AD} (1, 1, -1);	3*0.5
2	$\overrightarrow{AB} \land \overrightarrow{AD} (3,0,3)$	1
	$\left(\left(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right)\right) = 0$	1
3	the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar because	0.5 conclusion +
	$\left(\left(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right)\right) = 0$ or because \overrightarrow{AC} and \overrightarrow{AD} are collinear	0.5 explanation

Exercise 4 (7 points)

1	$\vec{D} \perp \vec{u}$ since $\vec{u} \cdot \vec{D} = 0$	0.25+0.25
	$\vec{B} \perp \vec{u}$ since $\vec{u}.\vec{B} = 0$	0.25+0.25
	$\vec{H} \perp \vec{u}$ since $\vec{u} \wedge \vec{E} = \mu c \vec{H}$	0.25+0.25
2	\vec{E} , $\vec{H} \perp \vec{R}$ since $\vec{E} \land \vec{H} = \vec{R}$	2*0.25+0.25
	$\vec{B} \perp \vec{R}$ since $\vec{B} \land \vec{H} = \vec{0}$ implies \vec{B} and \vec{H} are collinear	0.25+0.5
3	$\vec{H} \perp \vec{u}$, cf question 1	0.25
	$\vec{H} \perp \vec{R}$, cf question 2	0.25
	$\vec{H} \perp \vec{D}$ from $\vec{u} \wedge \vec{H} = -c\vec{D}$	0.25+0.25
	$\vec{H} \perp \vec{E}$ from $\vec{u} \wedge \vec{E} = \mu c \vec{H}$	0.25+0.25
4	From question 3, $\vec{u}, \vec{D}, \vec{E}, \vec{R}$ are coplanar	0.25
	This plane is perpendicular to $ec{H},ec{B}$	0.25
5	If \vec{u} and \vec{E} were collinear, $\vec{u} \wedge \vec{E}$ would be nil	0.5
	Here we have $ec{u}\wedgeec{E}=\mu cec{H} eqec{0}$	0.5
6	$\left(\left(\vec{u},\vec{E},\vec{B}\right)\right) = \left(\left(\vec{B},\vec{u},\vec{E}\right)\right) = \vec{B} \cdot \left(\vec{u} \wedge \vec{E}\right) = \vec{B} \cdot \mu c \vec{H} = \mu c \vec{B} \cdot \vec{H} > 0$	0.5 permutation
		0.5 result