MTES - Exam \#1

November 9, 2020
Duration: 1 h

No document allowed. No mobile phone. No calculator allowed. The proposed grading scale is only indicative.

Exercise 1 (≈ 4 points)

Determine the values of n for which the complex number $\left(\frac{(1-i \sqrt{3})^{5}}{(1-i)^{3}}\right)^{n}$ is a positive real.

Exercise 2 (≈ 5 points)

Let consider ω a complex number, and the following equation with one unknown z :

$$
z^{2}+(2+i \omega) z+(i \omega+2-\omega)=0
$$

The solutions are called z_{1} and z_{2}.

1. Give the expression of z_{1} and z_{2} in the case $\omega=i$.
2. Which value of ω implies $z_{1}=z_{2}$?
3. Let $\mathbf{M}, \mathbf{M}_{1}, \mathbf{M}_{2}$ be points in \mathbb{R}^{2}, of respective affixes ω, z_{1} and z_{2} (in the case $z_{1} \neq z_{2}$). Admitting that $\left(\overrightarrow{M_{1} M_{2},}, \overrightarrow{M_{1} M}\right)=\operatorname{Arg}\left(\frac{\omega-z_{1}}{z_{2}-z_{1}}\right)$, prove that $\mathrm{M}, \mathrm{M}_{1}, \mathrm{M}_{2}$ are aligned iff $\left(\omega-z_{1}\right)\left(\overline{z_{2}}-\overline{z_{1}}\right)=$ $\left(\bar{\omega}-\overline{z_{1}}\right)\left(z_{2}-z_{1}\right)$.

Exercise 3 (≈ 4 points)

Consider the points $\mathrm{A}(1,2,1), \mathrm{B}(1,-1,1), \mathrm{C}(0,1,2)$ and $\mathrm{D}(2,3,0)$ in \mathbb{R}^{3}.

1. Compute the coordinates of vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$.
2. Compute $\overrightarrow{A B} \wedge \overrightarrow{A D}$ and $((\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}))$.
3. What can you conclude about the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$?

Exercise 4 (≈ 7 points)

In physics, the propagation of electromagnetic waves obeys several laws. We consider the following relations, where c and μ are strictly positive constants and $\vec{u}, \vec{D}, \vec{E}, \vec{H}, \vec{B}, \vec{R}$ are 6 non-zero vectors in \mathbb{R}^{3} :
$\vec{u} \cdot \vec{D}=0$
$\vec{B} \wedge \vec{H}=\overrightarrow{0}$
$\vec{u} \wedge \vec{H}=-c \vec{D}$
$\vec{H} \cdot \vec{B}>0$
$\vec{u} \cdot \vec{B}=0$
$\vec{E} \wedge \vec{H}=\vec{R}$
$\vec{u} \wedge \vec{E}=\mu c \vec{H}$

1. Cite 3 vectors that are perpendicular to \vec{u}. Each time, give a short explanation.
2. Cite 3 vectors that are perpendicular to \vec{R}. Each time, give a short explanation.
3. Cite 4 vectors that are perpendicular to \vec{H}. Each time, give a short explanation.
4. Deduce that 4 vectors out of 6 belong to the same plane, and that this plane is perpendicular to the 2 other vectors (indicate which ones).
5. Prove that \vec{u} and \vec{E} are not collinear.
6. Give the sign of the scalar triple product $((\vec{u}, \vec{E}, \vec{B}))$.
