

Scan First Year 2020-2021

Duration: 1 h

MTES – Exam #1

November 9, 2020

No document allowed. No mobile phone. No calculator allowed. The proposed grading scale is only indicative.

Exercise 1 (\approx 4 points)

Determine the values of *n* for which the complex number $\left(\frac{(1-i\sqrt{3})^5}{(1-i)^3}\right)^n$ is a positive real.

Exercise 2 (\approx 5 points)

Let consider ω a complex number, and the following equation with one unknown z :

 $z^{2} + (2 + i\omega)z + (i\omega + 2 - \omega) = 0$

The solutions are called z_1 and z_2 .

- 1. Give the expression of z_1 and z_2 in the case $\omega = i$.
- 2. Which value of ω implies $z_1 = z_2$?
- 3. Let M, M₁, M₂ be points in \mathbb{R}^2 , of respective affixes ω , z_1 and z_2 (in the case $z_1 \neq z_2$). Admitting that $(\widehat{M_1M_2}, \overline{M_1M}) = Arg(\frac{\omega - z_1}{z_2 - z_1})$, prove that M, M₁, M₂ are aligned iff $(\omega - z_1)(\overline{z_2} - \overline{z_1}) =$ $(\overline{\omega}-\overline{z_1})(z_2-z_1).$

Exercise 3 (\approx 4 points)

Consider the points A (1,2,1), B (1,-1,1), C (0,1,2) and D (2,3,0) in \mathbb{R}^3 .

- 1. Compute the coordinates of vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} .
- 2. Compute $\overrightarrow{AB} \land \overrightarrow{AD}$ and $((\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}))$.
- 3. What can you conclude about the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} ?

Exercise 4 (\approx 7 points)

In physics, the propagation of electromagnetic waves obeys several laws. We consider the following relations, where c and μ are strictly positive constants and $\vec{u}, \vec{D}, \vec{E}, \vec{H}, \vec{B}, \vec{R}$ are 6 non-zero vectors in \mathbb{R}^3 :

 $\vec{u}.\vec{D}=0$

 \vec{H} . $\vec{B} > 0$

- $\vec{B} \wedge \vec{H} = \vec{0} \qquad \vec{u} \wedge \vec{H} = -c\vec{D}$ $\vec{E} \wedge \vec{H} = \vec{R} \qquad \vec{v} \wedge \vec{E} = uc\vec{H}$ $\vec{u} \wedge \vec{E} = \mu c \vec{H}$ $\vec{E} \wedge \vec{H} = \vec{R}$ $\vec{u}.\vec{B}=0$
- 1. Cite 3 vectors that are perpendicular to \vec{u} . Each time, give a short explanation.
- 2. Cite 3 vectors that are perpendicular to \vec{R} . Each time, give a short explanation.
- 3. Cite 4 vectors that are perpendicular to \vec{H} . Each time, give a short explanation.
- 4. Deduce that 4 vectors out of 6 belong to the same plane, and that this plane is perpendicular to the 2 other vectors (indicate which ones).
- 5. Prove that \vec{u} and \vec{E} are not collinear.
- 6. Give the sign of the scalar triple product $((\vec{u}, \vec{E}, \vec{B}))$.