Solutions and Grading Scheme for IE2S2 SCAN First 2020-2021 - 04/06/2021

Instructions: items in red are graded, items in black are for information only

EX1	3 pts
1.1	Total: 1 pt
$dC = \overrightarrow{B} \cdot d\overrightarrow{OM} = Pdx + Qdy + Rdz$	
$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 0, \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 0 \text{and} \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 0$	0,25 + 0,25 + 0,25
dC is hence closed and since P , Q and R are of class at least C^1 on \mathbb{R}^3 then it is also exact , then \overrightarrow{B} is derived from a potential	0,25
1.2	Total: 1,5pt
$\overrightarrow{B} = -\nabla V$, accepted if $\overrightarrow{B} = \nabla V$ with the different answers that go with it	
$-\frac{\partial V}{\partial x} = y^2 \cos(x) \Leftrightarrow v(x, y, z) = -y^2 \sin(x) + f(y, z)$	0,5
$-\frac{\partial V}{\partial y} = -\frac{\partial}{\partial y} \left(-y^2 \sin(x) + f(y, z) \right) = 2y \sin(x) + e^{2z} \Leftrightarrow f\left(y, z\right) = -ye^{2z} + g(z)$	0,5
$v(x, y, z) = -y^2 \sin(x) - ye^{2z} + 1 \text{ or } v(x, y, z) = y^2 \sin(x) + ye^{2z} + 1 \text{ (if } \overrightarrow{B} = \nabla V)$	0,5
1.3	Total: 0,5pt
$C = \int_{x}^{y} \overrightarrow{B} \cdot \overrightarrow{dl} = V(x) - V(y)$	0,25
$V(x) - V(y) = 0 - (-11) = 11$ or -11 (if $\overrightarrow{B} = \nabla V$)	0,25

EX2	4 pts + 0,5 (bonus)
2.1	Total: 1 pt
$\overrightarrow{F}(x,y) \times d\overrightarrow{OM} = \overrightarrow{0}$	
$\frac{x}{2}dy - ydx = 0 \text{ and no variation in } z$	0,5
$y = k'x^2$	0,5
Parabolas in the <i>xOy</i> plane and oriented from the origin outwards (bonus)	0,5 + 0,5 (bonus)

2.2	Total: 1pt
$dC = \left[\frac{x}{2}\overrightarrow{e}_x + y\overrightarrow{e}_y\right] \cdot \left[dx\overrightarrow{e}_x + dy\overrightarrow{e}_y\right]$	
Closed, since $\frac{\partial y}{\partial x} = 0 = \frac{\partial \frac{x}{2}}{\partial y}$	0,25
$\frac{x}{2}$ and y are C^1 on $\mathbb{R}^2 \Rightarrow$ exact, hence \overrightarrow{F} derives from a potential	0,25
For the potential $\frac{x}{2} \overrightarrow{e}_x + y \overrightarrow{e}_y = -\nabla \phi$	
Which gives $\Rightarrow \phi(x, y) = -\frac{x^2}{4} + f(y)$	0,25
The potential is $\phi(x, y) = -\frac{x^2}{4} - \frac{y^2}{2} + k$	0,25
2.3	Total: 0,5pt
$\phi(x, y) = C$ with C a constant	
$\frac{x^2}{4} + \frac{y^2}{4} = C'$ which is the equation of ellipses centered at the origin	0,5 + 0,5
appropriate sketch	0,5

EX3	6 pts + 0,5 (bonus)
3.1	Total: 1 pt
$\phi_{AOC} = \iint_{AOC} \overrightarrow{F} \cdot \overrightarrow{dS}$ with $y = 0$ and $\overrightarrow{dS} = (-\overrightarrow{e}_y) dx dz$	
$\phi_{AOC}=0$, and similarly $\phi_{COB}=0$ and $\phi_{AOB}=0$	0,25 + 0,25 + 0,25
They are the same since \overrightarrow{F} is always normal to \overrightarrow{dS}	0,25

3.2	Total: 2,75pt
One possible parametrisation is by using the vectors \overrightarrow{CA} and \overrightarrow{CB} :	
$\overrightarrow{OM} = u\overrightarrow{CA} + v\overrightarrow{CB} + 2\overrightarrow{e}_z$	
$\overrightarrow{OM} = u\left(\overrightarrow{e}_x - 2\overrightarrow{e}_z\right) + v\left(\overrightarrow{e}_y - 2\overrightarrow{e}_z\right) + 2\overrightarrow{e}_z = u\overrightarrow{e}_x + v\overrightarrow{e}_y + 2(-u - v + 1)\overrightarrow{e}_z,$ $u, v \in [0,1]$	1
Let $\overrightarrow{p} = \frac{\partial \overrightarrow{OM}}{\partial u} \times \frac{\partial \overrightarrow{OM}}{\partial v}$ be a vector normal to ABC	0,5
$\frac{\partial}{\partial u} \left[u \overrightarrow{e}_x + v \overrightarrow{e}_y + 2 \left(-u - v + 1 \right) \overrightarrow{e}_z \right] = \overrightarrow{e}_x - 2 \overrightarrow{e}_z$	0,25
$\frac{\partial}{\partial v} \left[u \overrightarrow{e}_x + v \overrightarrow{e}_y + 2(-u - v + 1) \overrightarrow{e}_z \right] = \overrightarrow{e}_y - 2 \overrightarrow{e}_z$	0,25
And hence, $\vec{p} = 2\vec{e}_x + 2\vec{e}_y + \vec{e}_z$	0,5
Finally $\overrightarrow{n} = \frac{\overrightarrow{p}}{ \overrightarrow{p} } = \frac{1}{3} \left[2\overrightarrow{e}_x + 2\overrightarrow{e}_y + \overrightarrow{e}_z \right],$ cqfd	0,25
3.3	Total: 0,5pt (bonus)
3.3 We already have a parametrisation as seen in 3.2. We need to demonstrate that it is equivalent to the one given.	Total: 0,5pt (bonus)
We already have a parametrisation as seen in 3.2. We need to demonstrate that it is	Total: 0,5pt (bonus) 0,5 (bonus)
We already have a parametrisation as seen in 3.2. We need to demonstrate that it is equivalent to the one given. If we take $u = ab$ and $-u - v = -a$ then we have that $v = a(1 - b)$ we can rewrite the parametrisation of 3.2 replacing u and v and get	
We already have a parametrisation as seen in 3.2. We need to demonstrate that it is equivalent to the one given. If we take $u = ab$ and $-u - v = -a$ then we have that $v = a(1 - b)$ we can rewrite the parametrisation of 3.2 replacing u and v and get $\overrightarrow{OM} = ab\overrightarrow{e}_x + a(1 - b)\overrightarrow{e}_y + 2(1 - a)\overrightarrow{e}_z \text{with.} a, b \in [0,1]$	0,5 (bonus)
We already have a parametrisation as seen in 3.2. We need to demonstrate that it is equivalent to the one given. If we take $u = ab$ and $-u - v = -a$ then we have that $v = a(1 - b)$ we can rewrite the parametrisation of 3.2 replacing u and v and get $\overrightarrow{OM} = ab\overrightarrow{e}_x + a(1 - b)\overrightarrow{e}_y + 2(1 - a)\overrightarrow{e}_z$ with. $a, b \in [0,1]$ 3.4	0,5 (bonus) Total: 1pt
We already have a parametrisation as seen in 3.2. We need to demonstrate that it is equivalent to the one given. If we take $u = ab$ and $-u - v = -a$ then we have that $v = a(1 - b)$ we can rewrite the parametrisation of 3.2 replacing u and v and get $\overrightarrow{OM} = ab\overrightarrow{e}_x + a(1 - b)\overrightarrow{e}_y + 2(1 - a)\overrightarrow{e}_z$ with. $a, b \in [0,1]$ 3.4 $\phi_{ABC} = \iint_{ABC} \overrightarrow{F}_{uv} \cdot \overrightarrow{dS}_{uv} \text{ with } \overrightarrow{dS} = \frac{1}{3} \left[2\overrightarrow{e}_x + 2\overrightarrow{e}_y + \overrightarrow{e}_z \right] du dv \text{ and } u, v \in [0,1]$	0,5 (bonus) Total: 1pt 0,25

3.5	Total: 0,75pt
$C_{AO} = \int_{AO} \overrightarrow{F} \cdot d\overrightarrow{OM}$ with $AO: y = 0, z = 0, x \in [0,1]$ and $d\overrightarrow{OM} = dx \overrightarrow{e}_x$	
$C_{AO} = \frac{1}{2}$	0,25
$C_{OB} = \int_{OB} \overrightarrow{F} \cdot d\overrightarrow{OM}$ with $OB : y \in [0,1], z = 0, x = 0$ and $d\overrightarrow{OM} = dy \overrightarrow{e}_y$	
$C_{AO} = -\frac{1}{2}$	0,25
Not the same due to the symmetry of \overrightarrow{F} on x and $y \Rightarrow C_{AO} = C_{BO}$ and hence $\Rightarrow C_{AO} = -C_{OB}$	0,25
3.6	Total: 0,5pt
\overrightarrow{F} is conservative since it is derived from a potential	
$\frac{\partial}{\partial x} \left(\frac{z}{2} \right) = 0 = \frac{\partial}{\partial z}(x), \frac{\partial}{\partial x} \left(y \right) = 0 = \frac{\partial}{\partial y}(x) \text{ and } \frac{\partial}{\partial y} \left(\frac{z}{2} \right) = 0 = \frac{\partial}{\partial z}(y), \text{ hence closed}$	0,25
\overrightarrow{F} is C^1 on $\mathbb{R}^3 \Rightarrow$ exact, hence \overrightarrow{F} derives from a potential $\Rightarrow C = 0$ on a closed path	0,25

EX4	4 pts
4.1	Total: 1 pt
$\phi_{D_H} = \iint_{D_H} \overrightarrow{E}_1 \cdot \overrightarrow{dS} \text{ with } \overrightarrow{dS} = r d\theta dr \overrightarrow{e}_z$	
Since \overrightarrow{E}_1 is according to \overrightarrow{e}_r , then $\overrightarrow{E}_1 \cdot \overrightarrow{dS} = 0$ and hence $\phi_{D_H} = 0$	0,25
$\phi_{D-H} = \iint_{D-H} \overrightarrow{E}_1 \cdot \overrightarrow{dS} \text{ with } \overrightarrow{dS} = r d\theta dr (-\overrightarrow{e}_z)$	
same thing for $\phi_{D_{-H}} = 0$	0,25
4.2	Total: 1pt
$\phi_C = \iint_C \overrightarrow{E}_1 \cdot \overrightarrow{dS}$ with $\overrightarrow{dS} = r d\theta dz \overrightarrow{e}_r$ and $r = a$	0,5
$\phi_C = 4\pi a HE(a)$	0,5
4.3	Total: 0,5pt
$\phi_A = \phi_{D_H} + \phi_{D_{-H}} + \phi_C$ and given the prior results we have	
$\phi_A = 0 + 0 + 4\pi a H \frac{4a}{1 + a^2} = \frac{16\pi H a^2}{1 + a^2}$	0,5
A.N. $\phi_A = \frac{64\pi}{5}$	0,5

4.4	Total: 1,5pt
$C_{AB} = \int_{B}^{A} \overrightarrow{E} \cdot \overrightarrow{dOM} \text{with} d\overrightarrow{OM} = dr\overrightarrow{e}_{r} + rd\theta \overrightarrow{e}_{\theta} + dz\overrightarrow{e}_{z}$	0,5
With the variable change $u = 1 + r^2$; $du = 2rdr$ we have $C_{AB} = 2 \int_{1}^{5} \frac{1}{u} du = 2 \left[\ln(u) \right]_{1}^{5}$	0,5
$C_{AB} = 2ln(5)$	0,5

EX5	3 pts
$C_{ABCOA} = C_{AB} + C_{BO} + C_{OC} + C_{CA}$	
$C_{AB} = \int_{AB} \overrightarrow{F} \cdot d\overrightarrow{OM} \text{ with } r = 1, \phi = 0, \theta = \pi/2 \to 0 \text{ and } d\overrightarrow{OM} = rd\theta \overrightarrow{e}_{\theta} = d\theta \overrightarrow{e}_{\theta}$	0,5
$C_{AB} = -1$	0,25
$C_{BO} = \int_{BO} \overrightarrow{F} \cdot d\overrightarrow{OM}$ with $r = 1 \rightarrow 0$, $\phi = \text{undefined (not a problem since only } \overrightarrow{e}_r$ remains), $\theta = 0$ and $d\overrightarrow{OM} = dr\overrightarrow{e}_r$	0,5
$C_{AB} = -\pi/4$	0,25
$C_{OC} = \int_{OC} \overrightarrow{F} \cdot d\overrightarrow{OM} \text{ with } r = 0 \to 1, \phi = 0, \theta = \pi/2 \text{ and } d\overrightarrow{OM} = d\overrightarrow{re}_r$	0,5
$C_{AB} = \pi/2$	0,25
$C_{CA} = \int_{CA} \overrightarrow{F} \cdot d\overrightarrow{OM}$ with $r = 1, \phi = \pi/2 \rightarrow 0, \theta = \pi/2$ and	0,25
$d\overrightarrow{OM} = r \sin\theta d\phi \overrightarrow{e}_{\phi} = d\phi \overrightarrow{e}_{\phi}$ $C_{AB} = -\pi^3/16$	0,25
finally $C_{ABCOA} = \frac{-\pi^3 + 4\pi - 16}{16}$	0,25