FIMI - SCAN - First

IE Fields MTES - Friday, June 4th, 2021 - Duration 2h

Instructions :

- Calculators, documents and mobile phones are **not allowed**
- A minimum of calculations or justifications are expected for all exercises!
- The presentation, the quality of writing, and the explicit reasoning will be taken into account when grading.

Good luck!

EXERCISE 1 (3 pts)

Consider a vector field given by $\vec{B}(x,y,z) = y^2 \cos(x) \vec{e}_x + (2y\sin(x) + e^{2z}) \vec{e}_y + 2ye^{2z} \vec{e}_z$

- 1. Calculate the elementary circulation $dC = \vec{B} \cdot d\vec{OM}$ and show that it is closed. What can we deduce from this?
- 2. Determine the potential V(x, y, z) from which this vector field derives, knowing that V = 1 at the origin.
- 3. What is the circulation of \overrightarrow{B} from point X(0,1,0) to point $Y(\pi/2,3,0)$?

EXERCISE 2 (4 pts) Let $\overrightarrow{F}(x,y) = \frac{x}{2} \overrightarrow{e}_x + y \overrightarrow{e}_y$ be a vector field in \mathbb{R}^2 and represented by the figure below.

- 1. Determine the field lines' expression. On a graph, sketch as precisely as possible **one** field line obtained. **Bonus** : express the orientation of the field line.
- 2. Show that \overrightarrow{F} derives from a potential.
- 3. Determine the equipotentials' expression. On the same graph as for Q.1, sketch as precisely as possible one equipotential obtained.

EXERCISE 3 (6 pts)

Let $\overrightarrow{F}(x,y,z) = x \overrightarrow{e}_x + y \overrightarrow{e}_y + \frac{z}{2} \overrightarrow{e}_z$ be a vector field defined on \mathbb{R}^3 . In a cartesian frame and coordinates let the points A(1,0,0), B(0,1,0), O(0,0,0) and C(0,0,2), define the boundary of a prism, with outward orientation.

- 1. Compute the fluxes Φ_{AOC} , Φ_{COB} and Φ_{AOB} of \overrightarrow{F} through the lateral surfaces of the prism, respectively the triangles AOC, COB and AOB. Are they the same? If yes, why? If not, why aren't they the same?
- 2. Show that the oriented surface of the triangle ABC accepts $\left[\frac{2}{3}\overrightarrow{e}_x + \frac{2}{3}\overrightarrow{e}_y + \frac{1}{3}\overrightarrow{e}_y\right]$ as a normal vector.
- 3. Show that $[uv \overrightarrow{e}_x + u(1-v) \overrightarrow{e}_y + 2(1-u)) \overrightarrow{e}_z]$, with $0 \le u, v \le 1$ is a possible parametrisation of the the triangle *ABC*.
- 4. Compute the flux Φ_{ABC} of \overrightarrow{F} through the surface of the triangle ABC.
- 5. Calculate the circulations C_{AO} and C_{OB} of \overrightarrow{F} on the segments [A, O] and [O, B]. Are they the same? If yes why? If not, why aren't they the same?
- 6. Calculate the circulation of \overrightarrow{F} on the closed path ABCA.

EXERCISE 4 (4 pts)

Consider a space in \mathbb{R}^3 given by cylindrical coordinates (r, θ, z) . A device creates an electrical field $\vec{E}_1 = E(r)\vec{e}_r$, equal to zero on the (Oz) axis (E(0) = 0). Let C be a **closed** cylinder of dimensions $: -H \leq z \leq H$ and $0 \leq r \leq a$. The cylinder is bounded at the top by a disk D_H and at the bottom by another disk D_{-H} , as well as around its axis at r = a.

- 1. Show that the flux of \vec{E}_1 exiting the disks D_H and D_{-H} delimiting C are both equal to zero.
- 2. Express the flux of \vec{E}_1 exiting the lateral surface of the cylinder, as a function of a, H and E(a).

Now let us consider a special case of the field described above, where $E(r) = \frac{4r}{1+r^2}$.

- 3. Calculate the total flux of \overrightarrow{E}_1 through **all sides** of the cylinder C, for a = 2 and H = 1.
- 4. Calculate the circulation of \vec{E}_1 on the line segment [A,B], with A(0,0,1) and B(2,0,1).

EXERCISE 5 (3 pts)

The set of points A(1,0,0), B(0,0,1), C(0,1,0) and the origin define the connecting points of the following paths (as seen on the figure) :

- AB : 1/4 of a circle in the xOz plane with radius 1, centered at the origin;
- BO : line on the Oz axis with length 1;
- OC: line on the Oy axis with length 1;
- CA : 1/4 of a circle in the xOy plane with radius 1, centered at the origin.

Calculate the circulation of the field $\overrightarrow{F}(r,\theta,\phi) = (\theta - \frac{\pi}{4})\overrightarrow{e}_r + \sin(\theta)\overrightarrow{e}_\theta + \theta\phi\overrightarrow{e}_\phi$ (given in spherical coordinates and frame) on the closed boundary path ABOCA. Remember that θ is the angle starting from the Oz axis and ϕ the angle in the xOy plane, in spherical coordinates.